VIRUDHUNAGAR HINDU NADARS' SENTHIKUMARA NADAR COLLEGE

(An Autonomous Institution Affiliated to Madurai Kamaraj University)

[Re-accredited with 'A' Grade by NAAC]

Virudhunagar – 626 001.

Course Name: Master of Computer Applications Discipline : MCA Rules and regulations, Course Scheme and Scheme of Examinations (For those who join in June 2022 and after)

Course Scheme:

SEMESTER III

•.						Marks		Course	Courses having	Revised / New
Semester	Part	Course Title	Hours	Credit	Ι	Е	Total	Code	focus on employability/ entrepreneurship/ Skill development	/No Change / Interchanged/ Percentage of revision
	Core 12	Cryptography and Network Security	4	4	40	60	100	P20CAC31/ P22CAC31	Skill development	No Change
	Core 13	Principles of Compiler Design	4	4	40	60	100	P20CAC32/ P22CAC32	Skill development	No Change
	Core 14	Artificial Intelligence	4	4	40	60	100	P22CAC33	Employability/ Entrepreneurship/ Skill development	7% Revised
	Core 15	Internet of Things	4	4	40	60	100	P20CAC34/ P22CAC34	Employability/ Entrepreneurship/ Skill development	No Change
III	Elective III	Software Project Management / Theory of Computation /Soft Computing	5	5	40	60	100	P22CAE31 P20CAE32/ P22CAE32 P20CAE33/ P22CAE33	Employability/ Entrepreneurship/ Skill development Employability Skill development	5% Revised No Change No Change
	Core 16 – Lab	LAB: Android Programming	5	3	40	60	100	P22CAP31	Employability/ Entrepreneurship/ Skill development	2% Revised
	Core 17 – Lab	LAB: Dot Net Programming	4	2	40	60	100	P20CAP32/ P22CAP32	Employability/ Entrepreneurship/ Skill development	No Change
		Total	30	26					P19CA4PV	

SEMESTER IV

					Marks		Course	Courses having	Revised / New	
Semester	Part	Course Title	Hours	Credit	Ι	Е	Total	Code	focus on employability/ entrepreneurship/ Skill development	/No Change / Interchanged/ Percentage of revision
	Core 18	R Programming	4	4	40	60	100	P20CAC41/ P22CAC41	Employability/ Skill development	No Change
IV	Core 19 - Lab	LAB: Angular	4	2	40	60	100	P22CAP41	Employability/ Entrepreneurship/ Skill development	New
		Project and Viva-Voce	-	6	50	50	100	P22CA4PV	Employability/ Entrepreneurship/ Skill development	Mark Revised
		Total	8	12					<u>^</u>	

Course Title: Cryptography and Network Security	Total Hours: 60 Hours
Course Code: P20CAC31/ P22CAC31	Total Credits: 4

Course Outcome:

Students, after successful completion of the course, will be able to:

COs	CO Statement
CO1:	To understand the fundamentals of Cryptography.
CO2:	To acquire Knowledge on standard algorithms used to provide confidentiality,
	Integrityaand authentication.
CO3:	To understand the various key distribution and management schemes.
CO4:	To understand how to deploy encryption techniques to secure data in transit across
	Data networks.
CO5:	To design security applications in the field of information technology.

Unit I

12 Hours

Introduction – Security Goals; Cryptographic Attacks; Services and Mechanism; Techniques for security Goals Implementation.

Traditional Symmetric-Key Ciphers - Symmetric-Key Ciphers; Categories of Traditional Ciphers; Stream and Block Ciphers.

Introduction to Modern Symmetric-Key Ciphers - Modern Block Ciphers; Components of a Modern Block Cipher; Two classes of Product Ciphers; Attacks Designed for Block Ciphers; Modern Stream Ciphers.

Unit II

12 Hours

Data Encryption Standard (DES) - History of Data Encryption Standard (DES); DES Structure; Security of DES.

Advanced Encryption Standard (AES) - History of Advanced Encryption Standard (AES); Transformations used by AES; Key Expansion; The AES Cipher; Analysis of AES.

Unit III

12 Hours

12 Hours

Asymmetric-Key Cryptography - Difference between Symmetric-Key and Asymmetric; Key Cryptosystems; RSA Cryptosystem.

Message Integrity and Message Authentication – Message Integrity; Random Oracle Model; Message Authentication.

Unit IV

Digital Signature – Comparison; Process; Services; Attacks on Digital Signature; Digital Signature Schemes.

Entity Authentication - Entity Authentication and Message Authentication; Passwords-based Authentication; Challenge-Response Protocols; Zero-Knowledge Protocols; Biometrics.

Unit V

12 Hours

Key Management - Symmetric-Key Distribution; Kerberos; Symmetric-Key Agreement. **Security at the Application Layer -** E-mail System; Secure/Multipurpose Internet Mail Extension(S/MIME).

System Security – Description of the System; Malicious Programs; Intrusion Detection Systems (IDS).

Text Book:

Behrouz A Forouzan, Debdeep Mukhopadhyay, "Cryptography and Network Security". Third Edition, Tata McGraw Hill Education Private Limited, Fifth re print 2017.

Unit I	Chapter 1
	Chapter 3
	Chapter 5
Unit II	Chapter 6 (Page No:137 -150, 156, 157)
	Chapter 7 (Page No: 169 -190, 192 -195)
	Chapter 10 (Page No: 259 – 276)
Unit III	Chapter 11
	Chapter 13(Page No: 347 - 365)
Unit IV	Chapter 14
TT . TT	Chapter 15(Page No: 389 - 402)
Unit V	Chapter 16 (Page No:417-419,438 - 447)
	Chapter 19 (Page No:525, 526, 535 - 547)

Reference Books:

- 1) Atul Kahate, "Cryptography and Network Security", Third Edition, McGraw Hill Education Private Limited, Eighth Reprint2017.
- 2) William Stallings, "Cryptography and Network Security", PHI,2008.

E – **Resources**

- 1. <u>https://www.geeksforgeeks.org/cryptography-and-network-security-principles/</u>
- 2. <u>https://www.tutorialspoint.com/cryptography/index.htm</u>
- 3. <u>https://www.gatevidyalay.com/tag/cryptography-and-network-security-tutorial/</u>

Course Title: Principles of Compiler Design	Total Hours: 60 Hours
Course Code: P20CAC32/ P22CAC32	Total Credits: 4

Course Outcomes:

CO1:	To understand the functionality of each phase involved in Compilation process.			
CO2:	Implement the parsing techniques including Bottom-up and Top-down parsing for			
	the given programming construct described in Context Free Grammar.			
CO3:	To Constructing the different parsing table.			
CO4:	To Generate the intermediate code and the implementation of symbol table			

Unit I

Unit II

Unit III

Unit IV

Unit I

Introduction to Compilers - Compilers and translators; Why do we need translators; The structure of a compiler; Lexical Analysis; Syntax Analysis; Intermediate Code Generation; Optimization; Code Generation; Bookkeeping; Error Handling; Compiler Writing Tools.

(An Autonomous Institution Affiliated to Madurai Kamaraj University) [Re-accredited with 'A' Grade by NAAC] Virudhunagar – 626 001.

To Apply the optimization techniques and generate the machine code.

Finite Automata and Lexical Analysis - The role of the lexical analyzer; A simple approach to the design of lexical analyzers; Regular Expressions; Finite automata.

Unit II

CO5:

The Syntactic Specification of Programming Languages - Context free Grammars; Derivations and parse trees.

Basic Parsing Techniques - Parsers; Shift reduce parsing; Operator precedence parsing; Top down parsing; Predictive parsers.

Unit III

Automatic Construction of Efficient Parsers - LR parsers; The canonical collection of LR (0) items; Constructing SLR parsing tables; Constructing canonical LR parsing tables; Constructing LALR parsing tables; Using ambiguous grammars; An automatic parser generator; Implementation of LR parsing tables.

Unit IV

12 Hours Syntax-Directed Translation - Syntax directed translation schemes; Implementation of Syntax directed translators; Intermediate code; Postfix notation; Parse trees and syntax trees; Three address code, quadruples and triples.

Symbol Tables - The contents of a symbol table: Data structures for symbol tables.

Unit V

Error Detection and Recovery - Errors; Lexical phase errors; Syntactic phase errors; Semantic errors.

Introduction to Code Optimization - The principal sources of optimization; Loop optimization; The DAG representation of basic blocks.

Code Generation - Object programs; Problems in code generation; A machine Model; A simple Code generator; Peephole optimization.

Text Book:

Alfred V.Aho, Jeffrey D.Ullman, Principles of Compiler Design, Narosa Publishing House, 2002.

	Chapter 9 (9.1,9.2)	

Chapter 1,

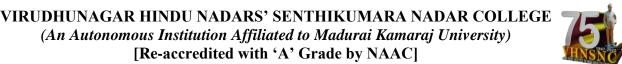
Chapter 5

Chapter 3 (3.1 to 3.4)Chapter 4 (4.1& 4.2),

Chapter 6 (6.1 to 6.8)

Chapter 7 (7.1 to 7.6),

12 Hours


12 Hours

12 Hours

12 Hours

V L	ruununaga	11 - 020	001
apter	11.		

	Chapter 11,
Unit V	Chapter 12(12.1 - 12.3),
Omt v	Chapter 15(15.1 - 15.4, 15.7)

Reference Book:

1. Alfred V.Aho, Monica S.Lam, Ravi Sethi, Jeffrey D.Ullman, Compilers Principles, Techniques and Tools, Second edition, Pearson Publications, 2007.

E – **Resources**:

- 1. https://archive.nptel.ac.in/courses/106/105/106105190/
- 2. https://archive.nptel.ac.in/courses/106/104/106104123/
- 3. https://archive.nptel.ac.in/courses/106/108/106108113/
- 4. https://archive.nptel.ac.in/content/storage2/courses/106104072/ui/Course home-1.htm
- 5. https://www.tutorialspoint.com/compiler_design/index.htm
- 6. https://www.geeksforgeeks.org/compiler-design-tutorials/

Course Title: Artificial Intelligence	Total Hours: 60 Hours
Course Code: P22CAC33	Total Credits: 4

Course Outcome:

Students, after successful completion of the course, will be able to:

CO1:	Understand the basics of Artificial Intelligence
CO2:	Gain knowledge on Search Techniques.
CO3:	Understand how to encode knowledge.
CO4:	Learn problem solving by collecting evidence
CO5:	Learn advance concepts in Artificial Intelligence

Unit I

12 Hours What is Artificial Intelligence - The AI problems; The Underlying Assumption; What is an AI Technique: The Level of the Model: Criteria for Success.

Problems, Problem Spaces and Search - Defining the Problem as a State Space Search; Production Systems; Problem Characteristics; Production System Characteristics; Issues in the Design of Search Programs; Additional Problems.

Unit II

12 Hours

Heuristic Search Techniques - Generate-and-Test; Hill Climbing; Best-First Search; Problem Reduction; Constraint Satisfaction; Means-Ends Analysis.

Knowledge Representation Issues - Representations and Mappings; Approaches to Knowledge Representation; Issues in Knowledge Representation; The Frame Problem.

Unit III

12 Hours Using Predicate Logic - Representing Simple Facts in Logic; Representing Instance and Isa Relationships; Computable Functions and Predicates; Resolution; Natural Deduction. Representing Knowledge Using Rules - Procedural versus Declarative Knowledge; Forward

versus Backward Reasoning; Matching.

Unit IV

12 Hours

Statistical Reasoning - Probability and Bayes Theorem; Certainty Factors and Rule-based Systems; Bayesian Networks; Dempster-Shafer Theory; Fuzzy Logic.

Unit V

12 Hours

Game Playing - Overview; The Minmax Search Procedure; Adding Alpha-Beta Cutoffs; Additional Refinements; Iterative Deepening.

Expert Systems - Representing and Using Domain Knowledge; Expert System Shells; Explanation; Knowledge Acquisition.

Text Book:

Elaine Rich and Kevin Knight, Artificial Intelligence, Tata McGraw Hill Publishing Company Limited, New Delhi, Third Edition, 2009.

Unit I	Chapter 1 (1.1 - 1.5), 2 (2.1 - 2.6)
Unit II	Chapter 3 $(3.1 - 3.6), 4 (4.1 - 4.4)$
Unit III	Chapter 5 (5.1 – 5.5), Chapter 6 (6.1, 6.3, 6.4)
Unit IV	Chapter 8 (8.1 – 8.5)
Unit V	Chapter 12 (12.1 – 12.5), 20 (20.1 – 20.4)

Reference Books:

- 1. Stuart Russell, Peter Norvig, Artificial Intelligence: A Modern Approach, Pearson education, Third edition, 2014.
- 2. Richard E Neapolitan, Artificial Intelligence: With an Introduction to Machine Learning, CRC Press, Second Edition, 2018.

E – **Resources**:

- 1. https://www.youtube.com/watch?v=qozouJ Mu-o
- 2. https://techvidvan.com/tutorials/ai-heuristic-search/
- 3. https://www.tutorialride.com/artificial-intelligence/knowledge-representation-nlp-inai.htm
- 4. <u>https://www.javatpoint.com/expert-systems-in-artificial-intelligence</u>
- 5. <u>https://www.tutorialspoint.com/artificial_intelligence/artificial_intelligence_expert_syste</u> ms.htm
- 6. https://www.youtube.com/watch?v=kUcSgSzuRSs&t=287s
- 7. https://www.youtube.com/watch?v=XCPZBD9lbVo&t=8s

Course Title: Internet of Things	Total Hours: 60 Hours
Course Code: P20CAC34/ P22CAC34	Total Credits: 4

Course Outcomes:

COs	CO Statement
CO1:	Understand the concepts of Internet of Things.
CO2:	Determine the Market Perspective of IoT and Data Management in IoT.
CO3:	Design IoT applications in different domain and be able to analyze their
	performance.
CO4:	Implement basic IoT applications on embedded platform.
CO5:	Application of IoT in Industrial and Commercial Building Automation and Real
	World Design Constraints

Unit I

Introduction to IoT: Introduction; Physical design of IoT; Logical design of IoT; IoT enabling Technologies; IoT Levels & Deployment templates.

Domain Specific IoTs: Introduction; Home Automation; Cities; Environment; Energy; Retail; Logistics; Agriculture; Industry; Health & Lifestyle.

Unit II

12 Hours

12 Hours

IoT & M2M: Introduction; M2M; Difference between IoT and M2M; SDN and NFV for IoT. **IoT System Management with NETCONF-YANG:** Need for IoT Systems Management; SNMP; Network Operator Requirements; NETCONF; YANG; IoT Systems Management with NETCONF-YANG.

Unit III

IoT Platforms Design Methodology: Introduction; IoT Design Methodology; Case Study on IoT System for Weather Monitoring; Motivation for using Python. **Case studies illustrating IoT Design:** Cities

Unit IV

12 Hours

12 Hours

12 Hours

IoT Systems – Logical Design using Python: Introduction; Installing Python; Python Data types & Data Structures; Control Flow; Functions; Modules; Packages; File Handling; Date/ Time Operations; Classes; Python Packages of Interest for IoT.

Unit V

IoT Physical Devices & Endpoints: What is an IoT Device; Exemplary Device: Raspberry Pi; About the Board; Linux on Raspberry Pi; Raspberry Pi Interfaces; Programming Raspberry Pi with Python; Other IoT Devices.

IoT Physical Servers & Cloud Offerings: Amazon Web Services for IoT.

Text Book:

Arshdeep Bahga, Vijay Madisetti, **Internet of Things: A Hands-On Approach**, Universities Press (India) Private Limited; First Edition, 2018.

Unit I	Chapter 1, 2
Unit II	Chapter 3, 4

	vii uuliuliagai – 0.	20
Unit III	Chapter 5, 9 (9.3)	
Unit IV	Chapter 6	
Unit V	Chapter 7, 8 (8.6)	

Reference Books:

- 1. Waltenegus Dargie, Christian Poellabauer. *Fundamentals of Wireless Sensor Networks: Theory and Practice*, WILEY Publication; First Edition 2010.
- 2. Francis daCosta. *Rethinking the Internet of Things: A Scalable Approach to Connecting Everything*, Apress Publications; First Edition,2013

E - Resources:

- 1. https://www.javatpoint.com/iot-internet-of-things
- 2. https://www.guru99.com/iot-tutorial.html
- 3. <u>https://www.tutorialspoint.com/iot_internet_of_things/index.asp</u>
- 4. https://w3cschoool.com/iot-tutorial
- 5. https://www.arduino.cc/

Elective – III (a)

Course Title : Software Project Management	Total Hours : 75 Hours
Course Code : P22CAE31	Total Credits : 5

Course Outcomes

COs	CO Statement
CO1:	Understand the practices and methods for successful software project management.
CO2:	Identify techniques for requirements, policies and decision making for effective
	resource management.
CO3:	Apply the evaluation techniques for estimating cost, benefits, schedule and risk.
CO4:	Devise a framework for software project management plan for activities, risk, monitoring and control.
CO5:	Devise a framework to manage people.

Unit I

15 Hours

Introduction to Software Project Management - Introduction; Why is Software Project Management Important; What is a Project?; Software Projects versus Other Types of Project; Contract Management and Technical Project Management; Activities Covered by Software Project Management, Plans, Methods and Methodologies; Some Ways of Categorizing Software Projects; Stakeholders; Setting Objectives; The Business Case; Project Success and Failure; What is Management?; Management Control; Traditional versus Modern Project Management Projects.

An Overview of Project Planning - Introduction to Step Wise Project Planning; Step 0 : Select Project; Step 1: Identify Project Scope and Objectives; Step 2: Identify Project Infrastructure; Step 3: Analyse Project Characteristics; Step 4: Identify Project Products and Activities; Step 5: Estimate Effort for Each Activity; Step 6: Identify Activity Risks; Step 7:

Allocate Resources; Step 8: Review/Publicize Plan; Steps 9 and 10 : Execute Plan/ Lower Levels of Planning.

Unit II

Project Evaluation and Programme Management – Introduction; A Business Case; Project Portfolio Management; Evaluation of Individual Projects; Cost Benefit Evaluation Techniques; Risk Evaluation;

Activity Planning – Introduction; Objectives of Activity Planning; When to Plan; Project Schedules; Projects and Activities; Sequencing and Scheduling Activities; Network Planning Models; Formulating a Network Model; Adding the Time Dimension; The Forward Pass; The Backward Pass; Identifying the Critical Path; Activity Float; Shortening the Project Duration; Identifying Critical Activities; Activity on Arrow Networks.

Unit III

Risk Management - Introduction; Risk; Categories of Risk; A Framework for Dealing with Risk; Risk Identification; Risk Assessment; Risk Planning; Risk Management; Applying the PERT Technique; Monte Carlo Simulation.

Monitoring and Control – Introduction; Creating the Framework; Collecting the Data; Review; Project Termination Review; Visualizing Progress; Cost Monitoring; Earned Value Analysis; Prioritizing Monitoring; Getting the Project Back to Target; Change Control; Software Configuration Management.

Unit IV

Managing Contracts – Introduction; Types of Contracts; Stages in Contract Placement; Typical Terms of a Contract; Contract Management; Acceptance.

Managing people in Software Environments – Introduction; Understanding Behaviour; Organizational Behaviour: A Background; Selecting the Right Person for the Job; Instruction in the Best Methods; Motivation; The Oldham; Hackman Job Characteristics Model; Stress; Health and Safety; Some Ethical and Professional Concerns.

Unit V

Working in Teams – Introduction; Becoming a Team; Decision Making; Organization and Team Structures; Leadership.

Software Quality – Introduction; The Place of Software Quality in Project Planning; The Importance of Software Quality; Defining Software Quality; Product versus Process Quality Management; Quality Management Systems; Process Capability Models; Techniques to Help Enhance Software Quality; Testing.

Text Books

Bob Hughes, Mike Cotterell, Rajib Mall, "Software Project Management", Tata McGraw Hill Education, Fifth Edition, 2013.

Unit I	Chapter 1,3
Unit II	Chapter 2 $(2.1 - 2.6)$, 6
Unit III	Chapter 7 (7.1 – 7.8, 7.10, 7.11), 9
Unit IV	Chapter 10, 11
Unit V	Chapter 12 (12.1 - 12.4, 12.9), 13 (13.1 – 13.4, 13.7 – 13.11)

15 Hours

15 Hours

15 Hours

15 Hours

Reference Books

- 1. Pankaj Jalote, "Software Project Management in Practise", Pearson Education, 2002.
- 2. Robert T. Futrell, Donald F. Shafer, Linda I. Safer, Quality Software Project Management, Pearson Education, Asia, 2002.

E- Resources

- 1. <u>https://www.geeksforgeeks.org/software-engineering-software-project-management-spm/</u>
- 2. <u>https://www.castsoftware.com/research-labs/risk-management-in-software-development-and-software-engineering-projects</u>
- 3. <u>http://www.jmpcollege.org/Adminpanel/AdminUpload/Studymaterial/Ch02_project_eval</u> <u>uation.pdf</u>
- 4. https://www.brainkart.com/article/Managing-People-and-Organizing-Teams_7961/
- 5. <u>https://onlinecourses.nptel.ac.in/noc19_cs70/preview</u>
- -----

Elective – III (b)

Course Title : Theory of Computation	Total Hours :75 Hours
Course Code : P20CAE32/ P22CAE32	Total Credits : 5

Course outcomes:

CO1:	To Design finite state automata and regular expression for a language specification
	and convert one form to another form
CO2:	To Learn to write Context Free Grammars and normalize.
CO3:	To Design push down automata (PDA) for languages and convert CFG to PDA and
	vice versa
CO4:	To Construct Turing machine by applying different techniques
CO5:	To Find undecidability in languages

Unit I:

15 Hours

Finite Automata: Deterministic Finite Automata; Definition of a Deterministic Finite Automaton; How a DFA Processor Strings; Simpler Notations for DFA's; Extending the Transition Function to Strings; The Language of a DFA.

Nondeterministic Finite Automata: An Informal View of Nondeterministic Finite Automata;Definition of Nondeterministic Finite Automata; The Extended Transition Function;The Language of an NFA; Equivalence of Deterministic and Nondeterministic Finite Automata.

Finite Automata with Epsilon-Transitions: Uses of Epsilon; Transitions; The Formal Notation for an Epsilon-NFA; Epsilon-Closures; Extended Transitions and Languages for Epsilon-NFA's; Eliminating Epsilon-Transitions.

Regular Expressions: The Operators of Regular Expressions; Building Regular Expression; Precedence of Regular-Expression Operators.

Finite Automata and Regular Expressions: From DFA's to Regular Expressions; Converting DFA's to Regular Expressions by Eliminating States; Converting Regular Expressions to Automata.

KSNC

Unit II:

15 Hours

Proving Languages Not to Be Regular: The Pumping Lemma for Regular Languages; Applications of the Pumping Lemma.

Closure Properties of Regular Languages: Closure of Regular Languages Under Boolean Operations; Reversal; Homomorphisms; Inverse Homomorphisms.

Equivalence and Minimization of Automata: Testing Equivalence of States; Testing Equivalence of Regular Languages.

Context-Free Grammars: Definition of Context-Free Grammars; Derivation using a Grammar; Leftmost and Rightmost Derivations.

Parse Trees: Constructing Parse Trees; The Yield of a Parse Tree; Inference, Derivations, and Parse Trees.

Ambiguity in Grammars and Languages: Ambiguous Grammars; Removing Ambiguity from Grammars.

Unit III:

15 Hours

Definition of the Pushdown Automaton: Informal Introduction; The Formal Definition of Pushdown Automata; A Graphical Notation for PDA's; Instantaneous Descriptions of a PDA. **Equivalence of PDA's and CFG's:** From Grammars to Pushdown Automata; From PDA's to Grammars.

Deterministic Pushdown Automata: Definition of a Deterministic PDA; Regular Languages and Deterministic PDA's.

Normal Forms for Context-Free Grammars: Eliminating Useless Symbols; Eliminating Epsilon-Productions; Eliminating Unit Productions; Chomsky Normal Form.

The Pumping Lemma for Context-Free Languages: Statement of the Pumping Lemma; Applications of the Pumping Lemma for CFL's.

Unit IV:

15 Hours

The Turing Machine: Notation for the Turing Machine; Instantaneous Descriptions for Turing Machines; Transition Diagrams for Turing Machines; The Language of a Turing Machine; Turing Machines and Halting.

Programming Techniques for Turing Machines: Storage in the State; Multiple Tracks; Subroutines.

Extensions to the Basic Turing Machine: Multitape Turing Machines; Equivalence of One-Tape and Multitape TM's; Nondeterministic Turing Machines.

Unit V:

15 Hours

Undecidable Problems About Turing Machines: Reductions; Turing Machines That Accept the Empty Language; Rice's Theorem and Properties of the RE Languages.

Post's Correspondence Problem: Definition of Post's Correspondence Problem; The "Modified" PCP; Completion of the Proof of PCP Undecidability.

The Classes P and NP: Problems Solvable in Polynomial Time; Polynomial-Time Reductions; NP-Complete Problems.

Text Book:

John E.Hopcroft, Rajeev Motwani, Jeffery D.Ullman, "Introduction to Automata Theory, Languages, and Computation", Pearson Education., 3rd Edition, 2009.

8
Chapter 2: 2.2 : 2.2.1 – 2.2.5, 2.3 : 2.3.1 – 2.3.5, 2.5 : 2.5.1 – 2.5.5
Chapter 3: 3.1: 3.1.1 – 3.1.3, 3.2: 3.2.1 – 3.2.3
Chapter 4: 4.1 :4.1.1 – 4.1.2, 4.2 :4.2.1 – 4.2.4, 4.4 :4.4.1 – 4.4.2
Chapter 5: 5.1: 5.1.2 – 5.1.4, 5.2: 5.2.1 – 5.2.3, 5.4: 5.4.1 – 5.4.2
Chapter 6: 6.1: 6.1.1 – 6.1.4, 6.3: 6.3.1 – 6.3.2, 6.4: 6.4.1 – 6.4
Chapter 7: 7.1: 7.1.1, 7.1.3 – 7.1.5, 7.2: 7.2.2, 7.2.3
Chapter 8: 8.2:8.2.2–8.2.6, 8.3: 8.3.1–8.3.3, 8.4:8.4.1,8.4.2, 8.4.4
Chapter 9: 9.3 :9.3.1 – 9.3.3, 9.4 :9.4.1 – 9.4.3
Chapter 10: 10.1 : 10.1.1,10.1.5,10.1.6

Reference Book:

Harry R.Lewis, Christos H.Papadimitriou, *Elements Of The Theory Of Computation*, Dorling kindersley (India) Pvt. Ltd., 2nd Edition, 2008.

e-Resources:

- 1. <u>https://www.geeksforgeeks.org/introduction-of-theory-of-computation/</u>
- 2. <u>https://www.javatpoint.com/automata-tutorial</u>
- 3. <u>https://www.tutorialspoint.com/what-is-the-theory-of-computation</u>
- 4. <u>https://archive.nptel.ac.in/courses/106/104/106104148/</u>

Elective – III (c)

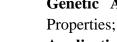
Course Title : Soft Computing	Total Hours :75 Hours
Course Code : P20CAE33/ P22CAE33	Total Credits : 5

Course Outcome:

CO1:	Learn the basic concepts of Soft Computing and gain knowledge of Artificial Neural	
	Network.	
CO2:	Learn associative memory and unsupervised learning	
CO3:	Learn fuzzy sets and its representations	
CO4:	Learn Classical Logic, Fuzzy Logic and decision making	
CO5:	Learn Genetic algorithms and pattern recognition.	

Unit I:

15 Hours


Introduction: Introduction to Soft Computing; Evolutionary Computing; Hard Computing Vs Soft Computing; Soft Computing Methods; Recent Trends in Soft Computing. **Fundamentals of Artificial Neural Network:** Introduction; Model of Biological Neuron; Mathematical Model of Neuron; ANN Architecture; Learning Rules; Learning Paradigms; Perceptron Network; Adaline and Madaline Networks; Applications of Neural Network.

Unit II:

15 Hours

Associative Memory: Introduction; Autoassociative Memory; Hetero-associative Memory; Bidirectional Associative Network; Applications of Associative Memory.

Unsupervised Learning: Introduction; Winner-Takes-All Network; Learning Vector Quantization; Self-organization Map; Adaptive Resonance Theory; Neocognitron; Applications of Unsupervised Learning.

Unit V:

Genetic Algorithms: History of Evolutionary Computing; Crossover and Mutation Properties; Genetic Algorithm Cycle; Fitness Function; Applications of Genetic Algorithm. Application of Soft Computing Techniques: Pattern Recognition; Image Processing; Application of Soft Computing in Real Estate.

Text Book:

B.K. Tripathy, J. Anuradha, Soft Computing Advances and Applications, 2015.

Unit I

Decision Making; Multicriteria Decision Making; Multistage Decision Making.

	1 /
	Chapter 2
Unit II	Chapter 4,
	Chapter 5
Unit III	Chapter 6,
	Chapter 7 (7.1 – 7.5)
Unit IV	Chapter 9,
	Chapter 11
Unit V	Chapter 13,
	Chapter 17 (17.1 – 17.3)

Chapter 1,

Reference Book:

Dilip K. Pratihar, Soft Computing Fundamentals and Applications, 2015.

e-Resources:

- 1. https://www.javatpoint.com/what-is-soft-computing
- 2. https://archive.nptel.ac.in/courses/106/105/106105173/

VIRUDHUNAGAR HINDU NADARS' SENTHIKUMARA NADAR COLLEGE (An Autonomous Institution Affiliated to Madurai Kamaraj University) [Re-accredited with 'A' Grade by NAAC]

Virudhunagar – 626 001.

Associate Models: Hopfield Network; Boltzmann Network; Simulated Annealing;

Classical Sets and Fuzzy Sets: Crisp Sets; Fuzzy Sets; History and Origin; Fuzzy Sets;

Classical Logic and Fuzzy Logic: Logic; Interval Analysis; Fuzzy Numbers; Fuzzy Logic. Fuzzy Decision Making: Introduction; Individual Fuzzy Decision Making; Multiperson

Basic Concepts; Paradigm Shift; Representation of Fuzzy Sets.

Unit III:

Unit IV:

Application of Networks.

15 Hours

15 Hours

15 Hours

VIRUDHUNAGAR HINDU NADARS' SENTHIKUMARA NADAR COLLEGE (An Autonomous Institution Affiliated to Madurai Kamaraj University)

[Re-accredited with 'A' Grade by NAAC]

Virudhunagar – 626 001.

Core - 16

Course Title : LAB: Android Programming	Total Hours :75 Hours
Course Code : P22CAP31	Total Credits : 3

Course Outcomes

COs	CO Statement
CO1:	Develop simple android application using Eclipse IDE.
CO2:	Exploring and Designing Android UI using views and view groups.
CO3:	Implementing activities and intents in developing applications.
CO4:	Develop interactive applications using data persistence and Messaging.
CO5:	Deployment of Android Application as APK.

- 1. Develop a sample Android application using Eclipse.
- 2. Develop an Android application using Activities.
- 3. Develop an Android application using Intents. (Explicit)
- 4. Develop an Android application using Built-in Intents.
- 5. Develop an Android application using Fragments.
- 6. Develop an Android application using Action Bar.
- 7. Develop an Android application for registration form using Basic Views.
- 8. Develop an Android application using Picker Views.
- 9. Develop an Android application using List Views.
- 10. Develop an Android application using Spinner Views.
- 11. Develop an Android application for Gallery using Image Views.
- 12. Develop an Android application using Menus. (Option Menu and Context Menu)
- 13. Develop an Android application to save and retrieve user data using Preferences.
- 14. Develop an Android application using Databases.
- 15. Develop an Android application using Content Providers.
- 16. Develop an Android application using 'Messaging' and 'E-Mail'.

Core 17 – Lab

Course Title : LAB: Dot Net Programming	Total Hours: 60 Hours
Course code: P20CAP32/ P22CAP32	Total Credits: 2

Course Outcomes:

COs	CO Statement	
CO1:	1: Understand the basic concepts VB.NET data structure	
CO2:	Know the knowledge of GUI tools in VB.NET windows application	
CO3:	3: Understand Classes and Objects, Inheritance in C#.NET	
CO4:	CO4: Understand function, procedure in ASP.NET	
CO5:	Work on Database Connectivity in VB.NET, C#.NET and ASP.NET	

List of Programmes:

- 1. Write a program in VB.Net console application to perform Array List Operations.
- 2. Write a program in VB.Net console application to demonstrate Constructor Overloading.
- 3. Write a program in VB.Net windows application to design a Scientific Calculator.
- 4. Develop Departmental Store application in VB.Net windows application.

5. Write a program in VB.Net to perform Number checking (like Armstrong, Adam, Palindrome, Perfect)

6. Write a C#.net console application to implement Multi Level Inheritance

7. Write a C#.net windows application to implement Regular Expression.

8. Develop a simple animation using C#.net windows application

9. Develop C#.net windows application for library management system

10. Write an ASP .Net program to find the Factorial of a given number by using Function

- 11. Write an ASP .Net program to generate a Fibonacci series by using Subroutine
- 13. Write an ASP .Net program for form validation by using all validation controls

14. Create an Asp.net web application for employ payroll processing.

SEMESTER - IV

Course Title: R Programming	Total Hours: 60 Hours
Course Code: P20CAC41/ P22CAC41	Total Credits: 4

Course Outcomes:

COs	CO Statement	
CO1:	To understand the basic concepts of R and gain knowledge on R	
	programming.	
CO2:	To gain knowledge on data storage in R Programming and to import and	
	export other File formats to R Programming	
CO3:	To gain knowledge on mathematical operations in R Programming.	
CO4:	To understanding the graphical operations in R Programming.	
CO5:	To gain knowledge on Customization of Plots.	

Unit I:

12 Hours

A Short Introduction to R: Introduction; Installing R; Getting Started; Some Information on R Commands; Special Values; Objects; Functions; Simple Manipulations - Numbers and Vectors; Matrices and Arrays; Factors; Lists; Data Frames.

Programming Using R: Introduction; Function Creation; Scripts; Logical Operators; Conditional Statements; Loops in R; Switch Statement.

Unit II:

12 Hours

Lists and Data Frames: Introduction; Creating a List; Common List Operations; Recursive List; Creating a Data Frame; Common Data Frame Operations; Using lapply() and sapply() Functions.

Import and Export: Introduction; Saving and Loading R data; Import and Export to CSV Files; Importing Data from SAS; Import and Export via ODBC.

Unit III:

12 Hours Mathematical and Statistical Concepts: Introduction; Maximum and Minimum; Frequency Distribution; Frequency Distribution Types; Measure of Central Tendency; Measure of Dispersion; Correlation.

Unit IV:

12 Hours

Graphics: Introduction; Basic Plots; Labeling and Documenting plots; Adjusting the Axes; Specifying Colors; Specifying Fonts; Specifying Sizes; Plotting Symbols.

Unit V:

12 Hours

Customised Plotting: Introduction; Change of Plotting Line Style; Adding Items on a Plot; Higher Dimensional Data Display; Changing the Plot Settings Using par() Function.

Text Book:

Dr Sandip Rakshit. R For Beginners. McGraw Hill Education (India) Private Limited; First Edition, 2017.

Unit I	Chapter 1,
	Chapter 2
Unit II	Chapter 3,
	Chapter 6
Unit III	Chapter 7
Unit IV	Chapter 12
Unit V	Chapter 13

Reference Books:

1. Garrett Grolemund. Hands on Programming with R, O'Reilly Media Inc.

2. Andrie de Vries. R for Dummies, John Wiley & Sons Inc, Second Edition, 2015

3. Kun Ren. Learning R Programming, Packt Publishing Ltd, First Edition, 2016

e-Resources:

- 1. https://www.tutorialspoint.com/r/index.htm
- 2. https://www.w3schools.com/r/
- 3. https://www.javatpoint.com/r-tutorial
- 4. https://www.rstudio.com/
- 5. https://www.codecademy.com/learn/learn-r

Course Title : LAB: Angular	Total Hours : 60 Hours
Course Code : P22CAP41	Total Credits : 2

Course Outcomes

COs	CO Statement	
CO1:	Create a basic sample application in Angular.	
CO2:	Develop an application using Components and Directives.	
CO3:	Implementing Services and Pipes in developing applications.	
CO4:	Develop interactive applications using Reactive Forms and Custom	
	Validators.	

CO5:

VIRUDHUNAGAR HINDU NADARS' SENTHIKUMARA NADAR COLLEGE

(An Autonomous Institution Affiliated to Madurai Kamaraj University)

[Re-accredited with 'A' Grade by NAAC]

Virudhunagar – 626 001.

- 1. Develop a sample Angular Application using AngularCLI.
- 2. Develop an Angular application using Interpolation.
- 3. Develop an Angular application using Property Binding.
- 4. Develop an Angular application using Two Way Binding.
- 5. Develop an Angular application using Structural Directives.
- 6. Develop an Angular application using Reactive Forms.
- 7. Develop a user authentication application using Firebase.
- 8. Develop an Angular application using Services.
- 9. Develop an Angular application using Pipes.
- 10. Develop an Angular application using Routing.

Course Title : Project and Viva-Voce	
Course Code : P22CA4PV	Total Credits : 6

(Industry/Institutional Based)

Course Outcomes:

CO1:	Students will have hands of experience of real life system development life cycle
CO2:	The students will learn to apply the technologies learnt during the course in real life projects
CO3:	Students will learn to work in real life project development environments involving deadlines and teamwork
CO4:	Students will learn to pick up and apply upcoming technologies in project development not covered during the course

Objectives:

- > To solve real life problems in the Industry/Academic Institutions/Computer science research.
- The Project and Viva-voce is one that involves practical work for understanding and solving problems in the field of computing.
- Students will do individually Commercial or Technical Project based on their Industry /Academic Institutions needs.
- ➢ With the known/needed technologies they can develop the software.
