

VIRUDHUNAGAR HINDU NADARS' SENTHIKUMARA NADAR COLLEGE

(An Autonomous Institution Affiliated to Madurai Kamaraj University)

Virudhunagar – 626 001.

Course Name : Bachelor of Science Discipline : Zoology (For those who joined in June 2022 and after) COURSE SCHEME:

| Semester | Part   | Subject Name                            | Hours | Credit | Int + Ext<br>=Total | Local | Regional | National | Global | <b>Professional Ethics</b> | Gender | Human Values | Environment &<br>Sustainability | Employability | Entrepreneurship | Skill Development | Subject<br>Code              | Revised / New /<br>No Change /<br>Interchanged &<br>Percentage of<br>Revision |
|----------|--------|-----------------------------------------|-------|--------|---------------------|-------|----------|----------|--------|----------------------------|--------|--------------|---------------------------------|---------------|------------------|-------------------|------------------------------|-------------------------------------------------------------------------------|
|          | Core   | Animal Physiology                       | 5     | 5      | 25+75=100           | ~     |          |          |        |                            |        | ~            |                                 | ~             |                  | ~                 | U3ZYC51/<br>U24ZYC51         | No change                                                                     |
|          | Core   | Genetics and Biostatistics              | 5     | 5      | 25+75=100           | ~     |          |          |        |                            |        | ~            |                                 | ~             |                  | ~                 | U3ZYC52/<br>U24ZYC52         | No change                                                                     |
|          | Core   | Microbiology and Immunology             | 4     | 4      | 25+75=100           | ~     |          |          |        |                            |        | V            |                                 | /             |                  | ~                 | U24ZYC53                     | Revised - 20 %                                                                |
|          | Core   | LAB: Animal Physiology                  | 2     | -      |                     | ~     |          |          |        |                            |        | >            |                                 | >             |                  | ~                 |                              | No change                                                                     |
|          | Core   | LAB: Genetics and Biostatistics         | 2     | -      |                     | ~     |          |          |        |                            |        |              |                                 | ~             | ~                | ~                 |                              | No change                                                                     |
| V        | Core   | <b>LAB:</b> Microbiology and Immunology | 2     | -      |                     | ~     |          |          |        |                            |        |              |                                 | ~             | ~                | ~                 |                              | No change                                                                     |
|          | Allied | Sericulture III                         | 4     | 4      | 25+75=100           | ~     |          |          |        |                            |        | ~            |                                 | ~             | ~                | ~                 | U24ZYA51                     | Revised - 20%                                                                 |
|          | Allied | LAB: Sericulture                        | 2     | -      |                     | ~     |          |          |        |                            |        |              |                                 | ~             | ~                | ~                 |                              | No change                                                                     |
|          | SBE    | Employability Skills                    | 2     | 1      | 25+75=100           |       |          |          |        |                            |        |              |                                 |               |                  |                   | U24PS51                      | Revised 50%                                                                   |
|          | NME    | Ornamental Fish Culture                 | 2     | 2      | 25+75=100           | >     |          |          |        |                            |        |              |                                 | ~             | ~                | ~                 | U3ZYN51/<br>U <b>24ZYN51</b> | No change                                                                     |
|          |        | Total                                   | 30    | 21     |                     |       |          |          |        |                            |        |              |                                 |               |                  |                   |                              |                                                                               |
|          |        | Internship programme                    | 60    | 2      |                     |       |          |          |        |                            |        |              |                                 |               |                  |                   | U24IP51                      | New                                                                           |



VIRUDHUNAGAR HINDU NADARS' SENTHIKUMARA NADAR COLLEGE

(An Autonomous Institution Affiliated to Madurai Kamaraj University)

Virudhunagar – 626 001.

|    | Core   | Ecology and Evolution                                 | 5  | 5  | 25+75=100 | ~ |  |  | ~ | ~ | ~ | ~ | U24ZYC61                    | Revised - 10% |
|----|--------|-------------------------------------------------------|----|----|-----------|---|--|--|---|---|---|---|-----------------------------|---------------|
|    | Core   | Biochemistry                                          | 5  | 5  | 25+75=100 | ~ |  |  | ~ | ~ | ~ | ~ | U24ZYC62                    | Revised - 10% |
|    | Core   | Biotechnology                                         | 4  | 4  | 25+75=100 |   |  |  |   |   |   |   | U3ZYC63/<br>U24ZYC63        | No Change     |
|    | Core   | LAB: Animal Physiology,<br>Genetics and Biostatistics | 2  | 2  | 40+60=100 | ~ |  |  | ~ | ~ | ~ | ~ | U24ZYCP61                   | Revised - 10% |
|    | Core   | LAB: Ecology, Evolution and<br>Biochemistry           | 2  | 2  | 40+60=100 | ~ |  |  | ~ | ~ | ~ | ~ | U24ZYCP62                   | Revised - 10% |
| VI | Core   | LAB: Microbiology,<br>Immunology and Biotechnology    | 2  | 4  | 40+60=100 | ~ |  |  | ~ | ~ | ~ | ~ | U24ZYCP63                   | Revised - 10% |
|    | Allied | Sericulture IV                                        | 4  | 4  | 25+75=100 |   |  |  |   |   |   |   | U2ZYA61/<br>U24ZYA61        | No Change     |
|    | Allied | LAB: Sericulture III and IV                           | 2  | 2  | 40+60=100 |   |  |  |   |   |   |   | U3ZYA6P/<br>U24ZYAP61       | No Change     |
|    | SBE    | Project                                               | 2  | 2  | 25+75=100 |   |  |  |   |   |   |   | U1ZY6PR/<br><b>U24ZY6PR</b> | No Change     |
|    | NME    | Human Biology                                         | 2  | 2  | 25+75=100 |   |  |  |   |   |   |   | U3ZYN61/<br>U24ZYN61        | No Change     |
|    |        | Total                                                 | 30 | 32 |           |   |  |  |   |   |   |   |                             |               |



### **SEMESTER: V**

### **CORE: 7 - ANIMAL PHYSIOLOGY**

### Contact hours per Week – 5 hours Contact hours per Semester – 75 hours Course Outcomes:

**CO1:** Student understand the concept of nutrition and digestion in animals

**CO2:** Students acquire the knowledge of various organs in the animals

**CO3:** Critically analyze the functions of the organ system and adaptations in animals

CO4: Acquires the comparative physiology of body osmotic balance in the organisms

CO5: To understand the role of hormones in physiological process

### Unit I

### (15 hours)

(15 hours)

Credits: 5 Subject Code: U3ZYC51/ U24ZYC51

Nutrition: Modes of Nutrition – Feeding mechanism. Human digestive system-Digestion of Carbohydrates, proteins and lipids - Absorption and assimilation of digested food materials - Physiological importance of fat soluble and water soluble vitamins

### Unit II

Structure of spiracle, trachea, gills and Human lungs - Hemoglobin, Transport of oxygen – Oxygen dissociation curves - Transport of  $CO_2$  – Chloride shift, Bohr's effect - Types of Circulation: open, closed and peripheral circulation. Structure of mammalian heart and its working mechanism – Heartbeat and cardiac Cycle- human Blood and its constituents - Blood coagulation and anti coagulants - Blood pressure: Sphygmomanometer, Hypotension, Hypertension.

### Unit III

I (15 hours) Types of muscles, Ultra structure of skeletal muscle - Sliding filament Theory, Molecular basis of muscle contraction, neuromuscular junction - Structure of nerve cell - Nature of nerve impulse – resting potential and action potential - Properties of nerve impulse - Conduction of nerve impulse – Sodium- Potassium pump, local circuit theory and saltatory conduction theory

Structure of synapse, neurotransmitters - mechanism of synaptic transmission - Sensory neuron and Motor neuron - Reflex action - Classification of Sensory receptors: Photo receptor- eye, Phonoreceptor – ear.

### Unit IV

### (15 hours)

Excretion: Forms of nitrogenous waste material - Classification of animals on the basis of excretory products - Organization of mammalian excretory system, Structure and function of Nephron, Mechanism of Urine formation, Formation of Kidney stones - Osmosis and Simple diffusion: Isotonic, Hypotonic and Hypertonic - Osmoregulation in freshwater fish, marine fish and birds - Thermoregulation in Poikilotherms and Homeotherms

### Unit V

### (15 hours)

Salient features of Hormones and Endocrine glands - Mechanism of hormone action – Role and disorders of Pituitary, thyroid, adrenal and pancreas secretions - Sex hormones and their functions in male and female.

### **Text books:**

- 1. Rastogi (2008), Essentials of Animal Physiology IV Edition S.C. New Age International Publishers, New Delhi.
- 2. R.Nagabhushanam *et al.*, (2008), Text book of Animal Physiology II Edition India Book House Pvt. Ltd. Mumbai.



3. N. Arumugam and A. Marikuttikan (2019), Text book of Animal Physiology- 12<sup>TH</sup> Revised Edition, Published by Saras Publication, Nagercoil.

### **Reference books:**

- 1. Mohan. P. Arora (2017), Animal Physiology, 7<sup>th</sup> Revised edition, Himalaya Publishing House, Mumbai.
- 2. Knut Schmidt Nielson (1994), Animal Physiology: Adaptation and Environment V Edition Cambridge University Press.
- 3. P.S Verma, B.S Tyagi, V.K. Agarwal (2010), Animal physiology S.Chand & Company Ltd, New Delhi.
- 4. Hoar, S.William Hoar (2004), General and Comparative Physiology, Prentice Hall of Indian Pvt.td.

| <br> | <br> |
|------|------|

| CORE: 8 GENETICS AND BIOSTAT                                                       | ISTICS                          |  |  |  |  |
|------------------------------------------------------------------------------------|---------------------------------|--|--|--|--|
| Contact hours per Week – 5 hours Credits: 5                                        |                                 |  |  |  |  |
| Contact hours per Semester – 75 hours                                              | Subject Code: U3ZYC52/ U24ZYC52 |  |  |  |  |
| <b>Course Outcomes:</b><br>At the end of this course, the students will be able to |                                 |  |  |  |  |
| CO1: Understand the genetics principles and fundamentals of inheritance.           |                                 |  |  |  |  |
| CO2: Familiarize the students with mechanism of inheritance of hereditary disease. |                                 |  |  |  |  |
| CO3: Recognize the structure and function of genetic material.                     |                                 |  |  |  |  |
| CO4: Acquire the basic knowledge about statistical methods.                        |                                 |  |  |  |  |
| CO5: Analyze the biological data using statistical tools.                          |                                 |  |  |  |  |

### Unit I

### (15 hours)

Mendelian Principle: Mendel and his experiments and law of inheritance: Law of Dominance, Law of Segregation, Law of Independent Assortment, back cross and test cross-Gene interaction: Complementary genes: Flower colour in sweet peas. Epistasis: coat colour in mice. Supplementary genes: Comb pattern in fowl - Mendelian Traits in human-Multiple alleles: ABO Blood groups and Rh factor in Human beings - Non-allelic gene inheritance: Skin colour in human beings.

### Unit II

Linkage and Crossing over: Coupling and repulsion hypothesis, Linkage in Drosophila- Linkage groups, Crossing over in Drosophila- Mechanism of crossing over-Types of crossing over, Sex determination in man and insects- Sex-linkage in man (Haemophilia and Colour blindness) -Chromosomal aberrations: Structural: Deletions, Duplications, Translocations and Inversions, Numerical: Eupliody (Monoploidy, Polyploidy), Aneuploidy (Monosomes, Nullisomes and Trisomes) - Extra Chromosomal Inheritance: Kappa particles in Paramecium. Sex-limited and sex-influenced inheritance.

### Unit III

Human Chromosomes: structure and types-Normal human karyotype, inherited disorders: Allosomal (Klinefelter's syndrome and Turner's syndrome), Autosomal (Down

(15 hours)

### (15 hours)



syndrome) -Chemical basis of Heredity: DNA as genetic material -Nucleic Acids: DNA Structure, Types and Replication, RNA Structure and Types-Gene Mutation: Types - substitution, insertion and deletion-Inheritance in Prokaryotes: Transformation, conjugation and transduction-Genetic code, Gene regulation in prokaryote-Lac Operon concept.

### Unit IV

### (15 hours)

Collection of data - Primary and Secondary data - classification and tabulation - Diagrammatic and Graphic representation - Measures of central tendency - Mean, Median, Mode - Measures of dispersion - Range, Standard deviation, Standard Error-simple problems.

### Unit V

### (15 hours)

Probability-Addition and Multiplication theorem-Binomial distribution- Chi square test-Student's 't' test - Correlation and its types - Rank correlation - Regression - simple problems

### Text books:

- 1. Verma, P.S. and Agarwal, V.K. (2005), Genetics, S. Chand& Co., New Delhi.
- **2.** Pranab Kumar Banergee (2007), Introduction to Biostatistics (2<sup>nd</sup> edition), S.Chand and company Limited, Ram Nagar, New Delhi.

### **Reference Books:**

- 1. Eldon John Gardner, Michael J. Simmons and D. Peter Snustad (2006), Principles of Genetics (VIIIth Edition), John Wiley & Sons Inc., Canada.
- 2. Stansfiled, W.D. (2002), Theory and Problems of Genetics, McGraw Hill Publication, New Delhi.
- 3. James D. Watson, Tunia A. Baker, Stephen P. Bell, Alexander Gann, Michel Lavine and Richard Losick (2005), Molecular Biology of Gene, Dorling Kindersly (India) Pvt. Ltd., New Delhi.
- 4. Bhatnagar, S.M. (1999), Essentials of Human Genetics, 4<sup>th</sup> Edition, Orient Longman.
- 5. Primrose, S.A. and Twyman, R.M. (2006), Principles of Gene- Manipulation of Genomics., T.J. International , Padstow, UK.
- 6. Gurumani, N. (2005), An Introduction to Biostatistics (2<sup>nd</sup> edition), M.J.P.Publishers, Tamil Nadu Book House, Triplicane, Chennai.
- 7. Rastogi, V.B. (2009), Fundamentals of Biostatistics, Ane's Students edition, New Delhi.
- 8. Zar, J.H (1999), Biostatistical analysis, Pearson Education, Delhi.
- 9. Bhaskara Rao, T. (2010), Methods of Biostatistics (3<sup>rd</sup> Edition), Paras Medical Publisher, New Delhi.

\_\_\_\_\_



| CORE: 9 MICROBIOLOGY AND IMM                                                 | IUNOLOGY               |  |  |  |  |
|------------------------------------------------------------------------------|------------------------|--|--|--|--|
| Contact hours per Week – 4 hours                                             | Credits: 4             |  |  |  |  |
| Contact hours per Semester – 60 hours                                        | Subject Code: U24ZYC53 |  |  |  |  |
| Course Outcomes:                                                             |                        |  |  |  |  |
| Upon completion of the course, the students will be al                       | ble to                 |  |  |  |  |
| CO1: Identify the structure of microorganisms.                               |                        |  |  |  |  |
| CO2: Relate the association of microbes with food in daily life.             |                        |  |  |  |  |
| CO3: Distinguish the symptoms and mode of transmission of various infectious |                        |  |  |  |  |
| diseases.                                                                    |                        |  |  |  |  |
| CO4: Describe the various components of the immune systems.                  |                        |  |  |  |  |
| CO5: Categorize the vaccines and investigate the aetiology of autoimmune     |                        |  |  |  |  |
| diseases.                                                                    |                        |  |  |  |  |

### Unit I

General microbial classification – five kingdom concept - Contribution of Edward Jenner and Louis Pasteur- Structure of prokaryotic cell: Capsule, cell wall of gram positive and gram negative difference, mesosome, ribosome and plasmids. Types of Culture media: Simple, Selective, Enriched and Differential Media - Bacterial Growth curve, measurement of bacterial growth and factors affecting bacterial growth – Salient features of virus and fungi - Sterilization - Physical and Chemical methods.

### Unit II

Normal microflora of human body – Epidemiology of Infectious diseases - sources of infection, methods of transmission, types of infectious diseases and Nosocomial infections - Bacterial diseases – Tuberculosis and Cholera - Viral disease – Rabies and Hepatitis - Fungal disease - Candidiasis and Dermatophytes

### Unit III

Microorganism of Food – Food spoilage – perishable (meat, Fish and Milk), semi perishable (fruits and Vegetable) and non-perishable (Nuts and cereals) food items – Preservation: Physical and Chemical methods – Fermented foods - Yoghurt - Food poisoning: Bacterial (Botulism, Salmonellosis) and Fungal (Aflatoxin) and their symptoms

### Unit IV

History of Immunology – Paul Ehrlich, Robert Koch and Karl Landsteiner, Organs of the Immune system: Primary lymphoid organs – Bone Marrow and Thymus - Secondary lymphoid organs – Spleen and lymph nodes. Cells of the Immune system - T Cell and B Cells - Types of Immunity: Innate immunity, Physical, Mechanical, biochemical and cellular factors – Phagocytosis. Acquired immunity - Active and passive immunity - Properties of Antigens: Foreignness, Size, Chemical composition and Heterogeneity. Antibodies – Properties, structure and function of IgG. Antigen - antibody reactions: Precipitation and agglutination.

### (12 hours)

# (12hours)

(12 hours)

### (12 Hours)



### Unit V

### (12 hours)

Vaccine- types – Live Attenuated vaccines, Killed vaccines and Toxoid vaccine -Immunization schedule - Hypersensitivity – Type I (Anaphylaxis) and Type II (Antibody dependent cytotoxic reaction) - Autoimmune diseases – Rheumatoid arthritis and Hashimoto's thyroiditis, Immunodeficiency disease – AIDS – Mechanism of HIV to escape from Host Immune surveillance - Transplantation immunology - types of grafts, Mechanism of Graft Rejection.

### Text books:

- 1. Dubey and Maheshwari, (2015), A Textbook of Microbiology, Chand & Company Ltd, New Delhi.
- 2. C.V.Rao, (2006), A Text Book of Immunology, Narosa Publishing house Pvt Ltd. New Delhi.

### **Reference Books:**

- 1. Prescott, Harley, Klein, (2010), Microbiology, 6th edition, WCB McGraw Hill Co. New Delhi.
- 2. Frazier, Westhoff, (1995), Food Microbiology, 4th Edition, Tata McGraw Hill Pvt Ltd. Columbus.
- 3. Eli Benjamini, Geoffrey Sunshine, Sidney Leskowitz, (1996), Immunology-3<sup>rd</sup> Edition, WileyLiss, Inc., New York.
- 4. Goldsby R.A., Kindt T.J, Osborne B. A (2000), Immunology, Kuby, 4th Edition, W.H. Freeman and Company.
- -----

| ALLIED: 4                                                                                           | SERICULTURE III           |                                   |  |
|-----------------------------------------------------------------------------------------------------|---------------------------|-----------------------------------|--|
| Contact hours per Week – 4 ho                                                                       | urs                       | Credits: 4                        |  |
| Contact hours per Semester – 6                                                                      | 60 hours                  | Subject Code: U24ZYA51            |  |
| <b>Course Outcomes:</b><br>At the end of this course, the stu                                       | idents will be able to    |                                   |  |
| CO 1: Understand the re                                                                             | quirements and preparat   | ion of a silkworm rearing house.  |  |
| CO 2: Identify the improved technologies in silkworm rearing and its impact on cocoon productivity. |                           |                                   |  |
| CO3: Comprehend the p                                                                               | rocess of spinning and h  | narvesting of cocoon.             |  |
| CO 4: Recognize the pro                                                                             | ocedure of silkworm see   | d production in a grainage.       |  |
| CO 5: Distinguish techn                                                                             | ologies involved in the r | earing of non-mulberry silkworms. |  |

### Unit I

(12 Hours)

Rearing house: Location, orientation, plan and utilities – CSB model rearing house – Rearing appliances: leaf chambers, chopping knife and chopping board, rearing trays, rearing stands and racks, feathers, chopsticks, net, paraffin papers, heater, blower, thermometer,



humidifier, sprayer, hygrometer, rubber foam pads and ant-wells Disinfection: importance of disinfection – types of disinfectants – formalin, bleaching powder, chlorine dioxide, slaked lime and iodine compounds – methods of disinfection – hygiene practices in sericulture

### Unit II

Egg transportation – egg incubation – incubation time and devices – black boxing and its importance Chawki rearing: Preparation – brushing – methods of brushing – types of chawki rearing: traditional and improved method – optimum environmental conditions – feeding schedule – methods of bed cleaning – spacing – moulting and care during moulting Late age silkworm rearing – methods – optimum environmental conditions – feeding quantity and frequency – methods of bed cleaning – spacing – moulting and care during moulting

### Unit III

Mounting and mounting density – types of mountages – Identification of spinning larva – spinning – environmental requirements – Harvesting – time of harvesting – sorting, storage, packaging and transport of cocoons – leaf-cocoon ratio – maintenance of rearing records – byproducts of silkworm rearing and their utilization

### Unit IV

General account of silkworm egg production and demand – Silkworm seed organization – importance of quality seed cocoon production – Grainage: Location and capacity – model grainage – grainage equipments and their uses – disinfection and hygiene – Grainage activities: Sorting, selection and preservation of seed cocoons – sex separation of pupa – synchronization of moth emergence, pairing and de-pairing – refrigeration of moths – oviposition – mother moth examination – egg preparation methods

### Unit V

Non- mulberry silkworm rearing - environmental conditions and rearing technology Tasar, Eri and Muga silkworm - Seed organization of tasar, eri and muga silkworm.

### Text book:

- Ganga, G., and J. Sulochana Chetty (1991), An Introduction to Sericulture, OXFORD & IBH Publishing, New Delhi.
- Krishnaswami, S., Narasimhanna, M.N.; Suryanarayan, S.K and Kumararaj, S. (1973), Sericulture Manual-2 - Silkworm Rearing. Agriculture Service Bulletin, FAO, ROME.

### **Reference books:**

- Dandin, S.B., Jayaswal, J. and Giridhar, K. (2003), Handbook of Sericulture Technologies (3<sup>rd</sup> Edn.), Central Silk Board (Ministry of Textiles – Govt. of India, BTM Layout, Madiwala, Bangalore.
- 2. Govindan, R., Ramakrishna Naika and Sannappa, B. (2004), Advances in Disease and Pest Management in Sericulture. Seri Scientific Publishers, Bangalore

### (12 Hours)

(12 Hours)

(12 Hours)

(12 Hours)





3. Nataraju, B., Sathyaprasad, K., Manjunath, D. and Sawani Kumar, C. (2005), Silkworm Crop Protection, Central Silk Board, Bangalore.

### **EMPLOYABILITY SKILLS**

| Course Title : Employability Skills | Total Hours : 30 Hours |
|-------------------------------------|------------------------|
| Course Code : U24PS51               | Total Credits : 1      |

### **COURSE OUTCOMES:**

### On completing this course, students can/are able to

| Cos         | CO STATEMENT                                                                   |
|-------------|--------------------------------------------------------------------------------|
| <b>CO1:</b> | enhance their skills in solving quantitative aptitude problems                 |
| <b>CO2:</b> | expertise themselves in solving verbal and non-verbal reasoning problems.      |
| CO3:        | prepare for various public and private sector exams and placement drives.      |
| CO4:        | interpret the concepts of LOGICAL REASONING Skills.                            |
| CO5:        | analyze the problems logically and approach the problems in a different manner |

### **Unit I: Quantitative Aptitude – I**

H.C.F. and L.C.M. of Numbers - Average - Percentage - Profit and Loss - Ratio and Proportion - Time and Work - Time and Distance - Train Speed.

### **Unit II: Quantitative Aptitude – II**

Area related problems - Problems on Ages - Boat and Stream - Simple Interest - Compound

Interest - True discount - Calendar - Clocks - Data Interpretation - Bar Graphs - Pie Chart.

### **Unit III: Verbal Reasoning – I**

Analogy - Classification - Series - Coding & Decoding - Coded inequality - Blood relations -Direction sense test.

### **Unit IV: Verbal Reasoning – II**

Number Test - Ranking and Time Sequence Test - Seating arrangements - Alphabet Test -Logical Venn Diagram.

### **Unit V: General Knowledge**

Abbreviations & Acronyms - Famous Personalities - Important Days (National & International) - Capital Cities and Currencies – Current affairs - Sports – RBI & Banking Terms – Basics of Computers and Internet.

### **Reference Books:**

1. R.S.Agarwal, Quantitative Aptitude for Competitive Examinations, S Chand Publishing company; Revised edition (21 February 2017).

#### III - B.Sc. Zoology 1081

### 6 Hours

6 Hours

### 6 Hours

6 Hours

### 6 Hours



- R.S.Agarwal, A modern approach to logical reasoning, S Chand Publishing company; August 2022.
- 3. R.S.Agarwal, A Modern Approach To Verbal Reasoning (Old Edition), S Chand Publishing company.
- 4. R.S.Agarwal, Advanced objective general knowledge revised edition, S Chand Publishing company, 2017.

### e-Resources:

- 1. https://www.cuemath.com/numbers/hcf-and-lcm/
- 2. https://www.geeksforgeeks.org/speed-time-distance-formula-and-aptitude-questions/
- 3. chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://cdn1.byjus.com/wpcontent/uploads/2020/06/Boat-Stream-Sample-Questions.pdf
- 4. https://www.hitbullseye.com/Simple-Interest-and-Compound-Interest.php
- 5. chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://examsdaily.in/wp-content/uploads/2018/09/br.pdf
- https://testbook.com/objective-questions/mcq-on-direction-and-distance--5eea6a0e39140f30f369e42a
- 7. https://unacademy.com/content/cat/study-material/data-interpretation-and-logicalreasoning/ranking-and-time-sequence/
- 8. https://www.toppr.com/guides/computer-aptitude-and-knowledge/basics-ofcomputers/basic-computer-terminology/

| <b>NME: 1</b>                                                              | ORNAMENTAL FISI                                                          | H CULTURE                       |  |  |  |  |
|----------------------------------------------------------------------------|--------------------------------------------------------------------------|---------------------------------|--|--|--|--|
| Contact hours pe                                                           | er Week – 2 hours                                                        | Credits: 2                      |  |  |  |  |
| Contact hours pe                                                           | er Semester – 30 hours                                                   | Subject Code: U3ZYN51/ U24ZYN51 |  |  |  |  |
| <b>Course Outcom</b><br>At the end of this                                 | es:<br>course, the students will be able                                 | e to                            |  |  |  |  |
| CO1: Study the types and general morphology of ornamental fishes.          |                                                                          |                                 |  |  |  |  |
| CO2: Provide knowledge about the construction and maintenance of aquarium. |                                                                          |                                 |  |  |  |  |
| <b>CO3:</b> Understand the importance of feeds and culture of live feeds.  |                                                                          |                                 |  |  |  |  |
| CO4: Familiarize the knowledge of ornamental fish breeding.                |                                                                          |                                 |  |  |  |  |
| <b>CO5:</b> Ac                                                             | <b>CO5:</b> Acquire ideas about the fish diseases and treatment methods. |                                 |  |  |  |  |

### Unit I

### (6 Hours)

Scope of ornamental fish culture – Adaptations in fishes – Characters of Freshwater Aquarium fishes - Gold fish, Angel fish, Gourami fish Guppy and molly – Characters of Aquarium Plants - *Azolla, Ipomea, Eichornia, Hydrilla* and *Myriophyla*.



### Unit II

Construction of Aquarium fish tank- Bedding materials- Bagging- Fish stocking-Tools for fish keeping-Hand net, Dip tube, Simple siphon, Automatic siphon, Razor blade Scrapper, Magnetic scrapper, Silicon gun with cartridge, Air line accessories, Feeding ring, Worm Feeder, submersible heater and  $CO_2$  cylinders

### Unit III

Plankton – culture of live feed organisms - Chironomus, Tubifex and spirulina - Artificial feeds - composition, preparation and types of artificial feed - pellet feeds.

### Unit IV

Guidelines for fish breeding - Breeding tank and breeding habit - Breeding methods in egg layers-Siamese fighter, blue gourami and gold fish. Breeding methods in live bearers-Black molly, Guppy and Sword tail. Community aquarium.

### Unit V

Conditions for healthy fish - Diseases and treatment: Protozoan - Costiasis, Ectoparasite disease: Argulosis, Endoparasite disease – Ligulosis – Bacterial - vertical scale disease, Fungal – Gill rot, Viral epizootic Ulcerative Syndrome (EUS).

### Text books:

- 1. Arumugam N. (2010), Aquaculture, Saras Publications, Nagercoil.
- 2. Jayashree, K.V.Thara devi,C.S Arumugam,N (2019), Home aquarium and ornamental fish culture, Saras Publications, Nagercoil
- 3. Srivastava C.B.L. (2006), Aquarium Fish Keeping -, Emeritus Professor, Dept. of Zoology, University of Allahabad Publication, KitabMahal, Allahabad.

### **Reference Books:**

- 1. Jameson J.D and Santhanam, R. (1996), Manual of Ornamental Fishes and Farming technologies- Fisheries College & Research Institute Tamil Nadu Veterinary & Animal Sciences, Thoothukudi.
- 2. Dick, Mills (1993), Aquarium Fish, Published by Dorling Kindersley Publishing, Incorporated, New York, U.S.A.
- 3. Santhanakumar, G. and Selvaraj, A.M. (1999), Concepts of Aquaculture, Meenam Publications, Nagercoil.

\_\_\_\_\_

(6 Hours)

(6 Hours)

### (6 Hours)

VIRUDHUNAGAR HINDU NADARS' SENTHIKUMARA NADAR COLLEGE

(An Autonomous Institution Affiliated to Madurai Kamaraj University)

### Virudhunagar – 626 001. SEMESTER: VI

| CORE: 10 ECOLOGY AND                                                           | EVOLUTION                               |  |  |  |
|--------------------------------------------------------------------------------|-----------------------------------------|--|--|--|
| Contact hours per Week – 5 hours                                               | Credits: 5                              |  |  |  |
| Contact hours per Semester – 75 hours                                          | Subject Code: U24ZYC61                  |  |  |  |
| Course Outcomes:                                                               |                                         |  |  |  |
| At the end of this course, the students will be a                              | able to                                 |  |  |  |
| CO1: Realize the importance of environment.                                    | interrelationship between organisms and |  |  |  |
| CO2: Study the adaptations of organisms to their immediate environment.        |                                         |  |  |  |
| CO3: Understand the need of biodiversity for the welfare of living organism.   |                                         |  |  |  |
| CO4: Understand the theories of evolution postulated by various evolutionists. |                                         |  |  |  |
| CO5: Understand knowledge about the                                            | formation of new species.               |  |  |  |

### Unit 1

Ecosystem – types – aquatic and terrestrial; Abiotic factors: Limiting factors -Temperature, Light and Water. Biotic factors; Autotrophs, Heterotrophs and saprotrophs. Food chain and its types - food web energy flow and productivity Biogeochemical cycle: Carbon, Nitrogen, Phosphorus - Intraspecific Relationship: Aggregation, Social behavior, territorialism and migration - Interspecific relationship: Neutralism, Commensalism, Symbiosis, Antagonism, Parasitism, Competition.

### Unit II

Types of Population - Density and Estimation-Natality-Mortality-Age distribution-Growth pattern. Fluctuation and Equilibrium - Biotic potential-Dispersal and distribution-Population Explosion-Regulation of population - Community characteristics - ecological pyramids- Ecotone and Edge effect, Niche, Succession.

### Unit III

Pollution – Air, water and soil – sources, biological effects, and control measures.Green House effect, Global warming and Acid rain Wildlife conservation – IUCN categories - Conservation of forest and wildlife – National Parks and sanctuaries of India - social forestry.

### Unit IV

Origin of life; theories of abiogenesis and biogenesis - Chemical evolution-Urey Miller's Experiment - Origin of Prokaryotic and Eukaryotic cell - Evidences for Evolution-Comparative anatomy, Homologous and Analogous structures, Vestigial organs, Physiological, Embryological, Biochemical, Biogeographical and Paleontological Evidences.

### Unit V

Lamarckism, Darwinism and mutation theory of De Vries, Geological time scale, Significance of Fossils and Connecting Links - Isolating mechanisms – Speciation: Allopatric

## (15 Hours)

### (15 Hours)

(15 Hours)

### (15 Hours)

### (15 Hours)





and Sympatric; Convergent, Divergent and Co-evolution - Modern synthetic theory, Mimicry and Adaptive colouration - Evolution of Man – Fossil record only.

### **Text Books:**

- 1. Sharma P.D (2000), Environmental Biology, Rastogi Publications, Meerut.
- 2. Verma P.S. and Agarwal V.K. (1993), Environmental Biology. S. Chand and Company, New Delhi.
- 3. Dr. N. Arumugam (2005), Organic Evolution, Saras Publications, Nagercoil.

### **Reference Books:**

- 1. Enger E.D. and Smith B.E (2004), Environmental Science. Mc. Graw Hill, New Delhi.
- 2. Eugene P Odum (2002), Fundamentals of Ecology. Natraj Publishers, Dehradun.
- 3. J.L. Chapman and M.J.Reiss (1999), Ecology Principles and Applications. Cambridge University Press.
- 4. Mohan P.Arora (2009), Organic Evolution. Himalaya Publishing House, Mumbai.
- 5. Theodosius Dobzhansky.,Ayala, F.J., Stebbins,G.L and Vaentine,J.W.(1971),Evolution, Surjeet Publications, New Delhi
- 6. Dr. Kavita (2009), Organic Evolution, AITBS Publishers, India
- 7. Dr. Veer Bala Rastogi (2005), Organic Evolution, Saras Publications, Nagercoil.

### 

| Contact hours per Week – 5 hours                                            | Credits: 5             |  |  |  |  |
|-----------------------------------------------------------------------------|------------------------|--|--|--|--|
| Contact hours per Semester – 75 hours                                       | Subject Code: U24ZYC62 |  |  |  |  |
| Course Outcomes:                                                            |                        |  |  |  |  |
| At the end of this course, the students will be able                        | to                     |  |  |  |  |
| CO1: Students acquire the concept of atomic and biological chemical bonds.  |                        |  |  |  |  |
| CO2: To learn the diversity of biological molecules in a systematic manner. |                        |  |  |  |  |
| CO3: Understand the knowledge of buffer system in the body.                 |                        |  |  |  |  |
| CO4: To understand the form and functions of macromolecules.                |                        |  |  |  |  |
| CO5: To familiarize the various biochemical techniques.                     |                        |  |  |  |  |

### Unit – I

**CORE: 11** 

### (15 Hours)

(15 Hours)

Structure of atoms - Hydrogen – Carbon - Nitrogen – Oxygen – Chlorine Atomic number, Atomic weight, Molecular weight, Stable and Unstable atoms - Primary Bonds – Ionic bonds, Covalent bonds, metallic bonds Secondary bonds – Hydrogen bond and Vander Waal's bond Water – Physical and Chemical properties and Structure of water.

### Unit – II

pH – Concept of pH, Acids and Bases – Dissociation of acid and bases.pH meter – Principle and Applications - Buffer – Types of Buffer system and its significance–



Bicarbonate buffer system, Plasma protein buffer system, Phosphate buffer system. Mechanism of buffering action

### Unit III

### (15 hours)

(15 hours)

(15 Hours)

General Classification of Carbohydrates - Monosaccharides - Classification -Biochemical structure of Diose, Triose, Tetrose, Pentose and Hexose sugar - Disaccharides -Glycosidic bond, Biochemistry of Sucrose and Lactose - Polysaccharides -Structure of Starch and Glycogen - Glycogenesis and Glycogenolysis, Biological functions of Carbohydrates

### Unit IV

Amino acids – Structure and Classification of Amino acids - Peptide bonds-Polypeptide chain Chemical composition of proteins. Classification of Proteins – Simple, Conjugated and Derived proteins - Biological importance of Proteins - Classification of Enzymes - Mechanism of enzyme action- Lock and Key hypothesis & Induced Fit hypothesis - Factors affecting enzyme activity

### Unit V

Classification of lipids- Glycerol Structure of Simple lipid- Fatty acids– Saturated and Unsaturated fatty acids - Biochemistry of Palmitic acid and Oleic acid, Biological importance of lipids Centrifuge- Types of centrifuge, Principle and its application, Chromatography-Paper, Thin Layer and Column chromatography, Principle and applications of Colorimeter.

### Text books:

- Ambika Shanmugam (2007), Fundamentals of Biochemistry for Medical Students 10, III cross street, West CIT, Nagar, Chennai.
- 2. N. Arumugam, *et al* (2014), Textbook of Biochemistry, 5<sup>th</sup> edition, published by Saras publication, Nagercoil.
- S.C.Rastogi (2010), Biochemistry, Tata McGraw Hill Education private Limited, 7 West Patel Nagar, New Delhi

### References

- 1. J.L.Jain, Fundamentals of Biochemistry -Chand & Company Ltd, Ram Nagar, Chennai
- 2. Robert.k.Murray, Darryl.K.Granner, A.Mayes & Victor, Harpers Biochemistry Practice Hall International.
- A.S.Saini, 1996, Text book of Biochemistry -2<sup>nd</sup> edition Nazia printers, 2172 Rodgram, Lal Kaun, New Delhi.

\_\_\_\_\_



| CORE: 12 BIOTECHNOL                                                                   | OGY                             |  |  |  |  |  |
|---------------------------------------------------------------------------------------|---------------------------------|--|--|--|--|--|
| Contact hours per Week – 4 hours                                                      | Credits: 4                      |  |  |  |  |  |
| Contact hours per Semester – 60 hours                                                 | Subject Code: U3ZYC63/ U24ZYC63 |  |  |  |  |  |
| Course Outcomes:                                                                      |                                 |  |  |  |  |  |
| At the end of this course, the students will be able to                               |                                 |  |  |  |  |  |
| CO1: Understand the basic concepts of genetic engineering.                            |                                 |  |  |  |  |  |
| CO2: Demonstrate the methods of production and identification of recombinants.        |                                 |  |  |  |  |  |
| CO3: Outline the steps involved in animal cell culture and its clinical significance. |                                 |  |  |  |  |  |
| CO4: Distinguish the methods of transgenic animal production and gene therapy.        |                                 |  |  |  |  |  |
| CO5: Identify the avenues of biotechnological applications for human welfare.         |                                 |  |  |  |  |  |

### Unit I

History, scope and importance of biotechnology – Enzymes of rDNA technology: Exonuclease, Endonuclease, DNA ligase, DNA polymerase, Reverse transcriptase, Taq polymerase – Restriction endonuclease: characteristics and types – Cloning vectors: characteristics – types of vectors: plasmids and lambda phage – structure of pBR 322

### Unit II

Isolation and purification of plasmid – isolation of desired gene – construction of genomic and cDNA library – construction of recombinant DNA - Introduction of recombinant DNA into host cells: transformation, transfection, Calcium phosphate precipitation, Dextran mediated, Lipofection, Electroporation, Retroviral infection, micro injection, Shotgun Method

### Unit III

Animal cell culture: establishment of primary culture – disaggregation of tissue – types of cell lines – physical conditions for cell culture – types of culture – Equipments required for animal cell culture – Applications of animal cell culture: tissue Plasminogen Activator (tPA), Factor VIII & IX, Erythropoietin, therapeutic antibodies – Hybridoma technology: Production and applications of monoclonal antibodies

### Unit IV

Methods of transgenic animal production: embryonic stem cell technology and retroviral-mediated gene transfer – Transgenic cow, chick and fish – applications of transgenic animals – Gene therapy: somatic cell gene therapy for pulmonary diseases and germ line gene therapy – Animal cloning – therapeutic and reproductive cloning – RAPD – Forensic applications of DNA fingerprinting

### Unit V

Commercial production of penicillin and cyanocobalamin – Immobilization of enzymes: methods and applications – Bioremediation of heavy metals and hydrocarbons –

### (12 Hours)

(12 Hours)

### (12 Hours)

### (12 Hours)

### (12 Hours)



Potential hazards of biotechnology – Bioethics: problems and solutions – safety issues – legal issues

### Text books:

- 1. Rastogi, S.C., (2009), Biotechnology: Principles and Applications, Narosa Publishing House Pvt. Ltd., New Delhi.
- 2. Gupta, P.K., (2010), Elements of Biotechnology, Revised 2<sup>nd</sup> Edition, Rastogi Publications, Meerut.

### **References:**

- 1. Nair, A.J., (2008), Introduction to Biotechnology and Genetic Engineering, Infinity Science Press LLC, Hingham.
- 2. Bernard R. and Jack (2010), Molecular Biotechnology: Principles and application of recombinant DNA, ASM Press, Herndon, USA.
- 3. Primrose, S. B. and Twyman, R. M., (2006) Principles of Gene Manipulation and Genomics, 7th Ed., Blackwell Publishing, West Sussex, UK .

-----

### CORE: 14 LAB: ANIMAL PHYSIOLOGY, GENETICS AND BIOSTATISTICS

Contact hours per Week – 2 hours

Credits: 2

Contact hours per Semester – 30 hours

Subject Code: U24ZYCP61

**Course Outcomes:** 

At the end of this course, the students will be able to

CO 1: Understand the physiology of fish respiration and human blood cells

CO 2: Student demonstrate the blood pressure check up in the human being

CO 3: Acquires the knowledge of Mendelian hybrid cross and human traits

CO 4: Interprets the statistical knowledge of the experimental results

- CO 5: Critically analyse the genetic principles of human blood group
- 1. Salivary Amylase activity with relation to substrate.
- 2. Estimation of oxygen consumption in Tilapia fish
- 3. Qualitative test for nitrogenous waste Ammonia, Uric acid & Urea
- 4. Preparation of human blood smear differentiation of blood cells
- 5. Enumeration of Red Blood Corpuscles (RBC) by Haemocytometer
- 6. Enumeration of White Blood Corpuscles (WBC) by Haemocytometer
- 7. Osmolarity of Red Blood Corpuscles (RBC) in different saline solutions
- 8. Sphygmomanometer Demonstration
- 9. Spotters Striated muscles, Non-striated muscles and Cardiac muscles (Slide)
- 10. Model Structure of Human Heart, Human kidney, Human Eye

### LAB IN GENETICS AND BIOSTATISTICS

1. Study of Mendelian traits in human



- 2. Study of monohybrid experiment using beads
- 3. Study of dihybrid experiment using beads
- 4. Human Blood grouping
- 5. Calculation of mean, median, mode, standard deviation and standard error using *Polyalthia* leaves
- 6. Study of polygenic inheritance of quantitative traits (correlation between height and weight of students).
- 7. Study of probability using coin tossing experiment
- 8. Spotters- Pedigree chart, DNA model, Klinefelter's, Turner's and Down's syndromes, conjugation, transformation and transduction charts, Bar diagram, Histogram, Pie diagram and Frequency curve

-----

| CORE: 13 LAB: ECOLOGY, EVOLUTION AND<br>BIOCHEMISTRY                               |                         |  |  |  |  |
|------------------------------------------------------------------------------------|-------------------------|--|--|--|--|
| Contact hours per Week – 2 hours Credits                                           |                         |  |  |  |  |
| Contact hours per Semester – 30 hours                                              | Subject Code: U24ZYCP62 |  |  |  |  |
| <b>Course Outcomes:</b><br>At the end of this course, the students will be able to |                         |  |  |  |  |
| <b>CO 1:</b> Understand the ecosystem of a pond.                                   |                         |  |  |  |  |
| <b>CO 2:</b> Identifies the planktons in the water medium.                         |                         |  |  |  |  |
| <b>CO 3:</b> Relates the association of animals in the ecosystem.                  |                         |  |  |  |  |
| <b>CO 4:</b> Acquires the knowledge of evolutionary importance of animals.         |                         |  |  |  |  |
| <b>CO 5:</b> Knows the various adaptations in the animals.                         |                         |  |  |  |  |
| CO 6: Handles the biochemical instruments                                          |                         |  |  |  |  |
| <b>CO 7:</b> Analyses the quality of the biomolecules.                             |                         |  |  |  |  |

### ECOLOGY

- 1. Estimation of Dissolved oxygen in pond water
- 2. Mounting of fresh water/ marine water plankton
- 3. Detection of Transparency of water by Secchi Disc.
- 4. Observation of Animal Associations.
- 5. Study of Pond Ecosystem.
- 6. A Study tour to a minimum of three days duration should be conducted compulsorily, exposing the students to different habitats like forest ecosystem, pollution affected areas, wildlife sanctuaries, zoological parks, aquarium, marine habitat, and museums. A report on the same should be submitted individually in handwritten mode at the time of practical examination and assessed externally.

### **EVOLUTION**

- 1. Analysis of dermatoglyphic pattern
- 2. Animals of Evolutionary significance: Peripatus, Limulus, Archaeopteryx



- 3. Mimicry: Leaf insect, Stick insect
- 4. Adaptive colouration: Chameleon
- 5. Homologous and Analogous organs
- 6. Vestigial organs
- 7. Fossils

### BIOCHEMISTRY

- 1. Measurement of pH in different biological samples.
- 2. Preparation of Phosphate buffer
- 3. Determination of Acid number in edible oil.
- 4. Verification of Beer's- Lambert's law using potassium dichromate
- 5. Separation of Amino acids by Paper Chromatography
- 6. Centrifuge Isolation of RBC using centrifuge.
- 7. Qualitative analysis of Protein, Carbohydrate and Lipids
- Spotters pH Meter, Centrifuge, Spectrophotometer, Structure of Glucose (Model/ Diagram), Polypeptide chain (Diagram), Lock & Key Mechanism (Book Diagram), Structure of cholesterol (Book Diagram)

\_\_\_\_\_

### CORE: 15 LAB: MICROBIOLOGY, IMMUNOLOGY AND BIOTECHNOLOGY

Contact hours per Week – 2 hours

Credits: 4

Contact hours per Semester – 30 hours S Course Outcomes:

Subject Code: U24ZYCP63

At the end of this course, the students will be able to

CO1: Acquires the knowledge of culturing the microbes.

CO2: Analyses the microflora by plating techniques.

CO3: Knows how to prepare the Antigen and Antiserum.

CO4: Understand the knowledge of immunology and immunological products.

CO5: Students were able to estimate the Nucleic acids.

CO6: Able to isolate the DNA.

### MICROBIOLOGY

- 1. Preparation of culture media Broth, Agar plates and slants
- 2. Serial dilution technique for soil sample
- 3. Pure culture techniques Pour plate, Spread plate and Streak plate methods
- 4. Motility by wet mount preparation in curd sample
- 5. Simple and Gram staining technique
- 6. Analysis of air microflora by open plate method
- **7.** Spotters-Nutrient Broth, EMB Agar, L rod, Turn table, Inoculation Loop/Needle, laminar air flow, incubator

### IMMUNOLOGY

1. Preparation of Antigen (SRBC)



- 2. Preparation of serum from sheep blood
- 3. Isolation of lymphocytes
- 4. Agglutination Widal slide test
- 5. Precipitation Radial immunodiffusion test Demonstration
- 6. Spotters –Immunoglobulin G, Immunization Schedule, Rh Blood group, Spleen and Lymph node.

### BIOTECHNOLOGY

- 1. Isolation of genomic DNA from goat liver/ spleen
- 2. Agarose gel electrophoresis of DNA (isolated in the previous experiment/ commercial DNA)
- 3. Estimation of DNA by diphenylamine method
- 4. Estimation of RNA by orcinol method
- 5. Production of recombinant insulin (chart/ model)
- 6. Polymerase Chain Reaction (Visit to a research laboratory may be undertaken)
- 7. Southern blotting and Northern blotting (ICT tools)
- 8. Equipments required for animal cell culture (photographs/ models)
- 9. DNA fingerprinting (chart/ photograph)
- \_\_\_\_\_

# ALLIED: 5SERICULTURE IVSEMESTER: VIContact hours per Week – 4 hoursCredits: 4Contact hours per Semester – 60 hoursSubject Code: U2ZYA61/U24ZYA61Course Outcomes:

At the end of this course, the students will be able to

| CO1: introduce the | ne concept of cocoon | , quality of cocoo | n and marketing of cocoon.    |
|--------------------|----------------------|--------------------|-------------------------------|
| CO2: know the      | pre-cocoon operation | n for reeling and  | l its significance in reeling |

| technology. |        |         |    |              |    |      |         |     |            |    |         |
|-------------|--------|---------|----|--------------|----|------|---------|-----|------------|----|---------|
| CO3: acqua  | aint w | vith th | ne | technologies | of | silk | reeling | and | importance | in | reeling |
| devices.    |        |         |    |              |    |      |         |     |            |    |         |

CO4: understand the properties and uses of silk, significance of processing and testing of raw silk.

CO5: know the economics of silkworm rearing and Entrepreneurship development programme.

### Unit I

Evolution of silk reeling industry and its present status – reeling as a cottage Industry – scope and limitation – importance of quality cocoons – Physical and commercial characteristics of cocoons: cocoon colour, shape, size, hardness, grain/wrinkle, weight of cocoon, weight of cocoon shell and shell ratio – Cocoon sorting: objectives and procedure – defective cocoons: double, flimsy, melted, urinated, stained, uzi-infested, moth emerged, deformed and flossy –Cocoon marketing: procedure for procurement of raw material – purchase of cocoon in open auction – grading of cocoons – visual inspection and selection – price fixation



### Unit II

Cocoon Stifling methods: sun-drying, steam stifling, hot air drying, Yamato hot air driers – advantages and disadvantages – preservation of cocoons – Cocoon cooking methods: open pan, three-pan, pressurized, floating and sunken systems – merits and demerits – Cocoon brushing methods: stick, hand and mechanical brushing – Reeling water: Use of water in silk reeling – water quality – relationship between water quality and silk reeling – corrective measures

### Unit III

Objective of silk reeling – Reeling operations: Formation of reeling end, jettebout, croissure, reels, speed of reels, traverse or distributors – Re-reeling and packing: Objectives, grant reeling, hank preparation, lacing, skeining, booking, bale making and bundling Reeling units: Country charkha, cottage basin, multi-end reeling machine, auto and semi-automatic reeling machines and improved CSRTI reeling devices – advantages and disadvantages

### Unit IV

Raw silk properties of Mulberry, Tasar, Eri and Muga silk: physical, chemical and microscopic – factors influencing the properties of raw silk – Raw silk testing: conditioned weight, visual inspection and mechanical tests: winding test, size deviation test, seriplane test, serigraph test and cohesion test – Raw silk grading: International standards (ISA) and Bureau of Indian Standards (BIS) Silk throwing and twisting: objectives of throwing – preparation for twisting, twisting of yarn, soaking, dressing, drying, winding, doubling and twisting – Silk weaving: warping, beaming, drawing denting, weft preparation, power loom and handloom weaving – Chemical processing of silk yarns and fabrics: Degumming, bleaching, dyeing, printing of silk yarns and fabrics – Byproducts of silk reeling industry and their utilization

### Unit V

Entrepreneurship development programme (EDP): Emergence and objectives of EDP –essential qualities to become an entrepreneur – selection of a potential entrepreneur – EDP in raising mulberry saplings, organization of chawki rearing centres, silk reeling units and mass production of parasitoids and predators – Mulberry cultivation (per hectare) – Cost and returns under irrigation and rain fed condition – Economics of silkworm rearing: Investment and returns

### Text book:

 Ganga, G., and J. Sulochana Chetty (1991) An Introduction to Sericulture, OXFORD & IBH Publishing, New Delhi.

### **Reference books:**

1. Jolly. M.S. Chowdhuty. S.N and Sen (1975) Non-Mulberry Sericulture in India, Central Silk Board, Bangalore.



- 2. Ullal S.M. and Narasimhanna M.N. (1987) Handbook of Practical Sericulture, Central Silk Board, Bangalore.
- 3. Mahadeveppa, D., Halliyal, V.G., Shankar, A.G. and Bhandiwad, R. (2000) Mulberry Silk Reeling Technology, Oxford and IBH Publishing Co. Pvt. Ltd., New Delhi
- 4. Yong Woo Lee (1999) Silk Reeling and Testing Manual, FAO Agricultural Services Bulletin, No. 136, Rome, Italy.
- 5. Khanka S.S. (2007) Entrepreneurial Development, S. Chand Publishing Co, New Delhi.

\_\_\_\_\_

### ALLIED: 6 LAB: SERICULTURE III & IV

Contact hours per Week – 2 hours

Contact hours per Semester – 30 hours

Subject Code: U3ZYA6P/ U24ZYAP61

Credits: 2

Course Outcomes:

At the end of this course, the students will be able to

**CO1:** Understands the knowledge of rearing tools and disinfection.

**CO2:** Knows how to rear the different ages of silkworm.

**CO3:** Able to differentiate the good and defective cocoon.

**CO4:** Acquires the knowledge of different types of silk wastes.

**CO5:** Quantitatively estimate the sericin and fibroin content of the silk.

### SERICULTURE III

- 1. Model and layout of silkworm rearing house with a rearing capacity of 100 DFLs
- 2. Silkworm rearing equipments and their uses
- 3. Effective concentration of disinfectants and preparation of disinfectants disinfection of rearing houses and equipments
- 4. Methods of brushing of silkworms
- 5. Young-age silkworm rearing methods and operations
- 6. Late-age silkworm rearing methods and operations
- 7. Mounting mountages, identification and mounting of spinning larvae
- 8. Plan of model grainage building and grainage equipments
- 9. Processing of seed cocoons deflossing sorting selection of good cocoons assessment of seed cocoons pupal examination
- 10. Mother moth examination individual and mass whole and sampling methods surface sterilization of silkworm eggs
- 11. Study of Meiosis in testis of Silk moth
- 12. Rearing of non-mulberry silkworm

### SERICULTURE IV

- 1. Preparation of line graph/ bar chart on trend of silk yarn and other textile fibre production over a period of 10 years
- 2. Determination of good cocoon and defective cocoon percentage



- 3. Determination of commercial characters of cocoon: average cocoon weight, shell weight, shell percentage or shell ratio, average filament length, reelability, raw silk recovery percentage, renditta and denier
- 4. Different methods of cocoon stifling (Photographs/ ICT tools)
- 5. Methods of cocoon boiling
- 6. Reeling units: Epprouvette, Charaka, Cottage basin, Multi-end and Automatic reeling devices (Photographs/ ICT tools/ Field visit)
- 7. Identification of textile fibers by physical and chemical test, microscopic examinations, flame tests and solubility test for polyester, cotton and silk
- 8. Estimation of sericin and fibroin percentage
- 9. Study of different types of silk wastes
- 10. Preparation of a project detailing cost and economics in sericulture
- 11. Visit to the silkworm (chawki/ late age) rearing houses, grainage centre, cocoon markets and/ or silk reeling establishments and/ or silk fabric manufacturing unit and/ or museum of Extension Division of CSRTI, Mysore must be undertaken to expose the students various aspects of post cocoon technology. The students should submit a consolidated report on such visits individually in handwritten mode at the end of the course and it should be assessed externally.

\_\_\_\_\_

### PROJECT

Contact hours per Week – 2 hours Contact hours per Semester – 30 hours

Subject Code: U1ZY6PR/ U24ZY6PR

\_\_\_\_\_

| NME: 2HUMAN BIOLO                                                                  | GY                              |  |  |  |  |  |
|------------------------------------------------------------------------------------|---------------------------------|--|--|--|--|--|
| Contact hours per Week – 2 hours                                                   | Credits: 2                      |  |  |  |  |  |
| Contact hours per Semester – 30 hours                                              | Subject Code: U3ZYN61/ U24ZYN61 |  |  |  |  |  |
| <b>Course Outcomes:</b><br>At the end of this course, the students will be able to |                                 |  |  |  |  |  |
| CO1: Understand the balanced diet and their importance.                            |                                 |  |  |  |  |  |
| CO2: Learn the functions of various organs of the human body.                      |                                 |  |  |  |  |  |
| CO3: Learn an idea about the determination of sex in human.                        |                                 |  |  |  |  |  |
| CO4: Understand the role sex hormones.                                             |                                 |  |  |  |  |  |
| CO5: Study the socio-cultural aspects of human evolution.                          |                                 |  |  |  |  |  |

### Unit I

SBE

(6 hours)

Credits: 2

Composition of food, Balanced Diet, Vitamins and minerals – deficiency diseases, Calorific value of food, malnutrition and obesity



### Unit II

### (6 hours)

Structure of human lungs – Blood – Blood Composition, Structure and function of heart, Blood Pressure – Structure of Kidney, Nephron – Formation of Urine

### Unit III

### (6 hours)

A general introduction about chromosomes, DNA and genes – Sex determination in man –Human Blood Groups and Rh factor

### Unit IV

### (6 hours)

Male and female sex hormones – Puberty – menstrual cycle – menopause – parturition – methods of contraception – types of Twins – Test tube baby

### Unit V

### (6 hours)

Origin of man – Diversification, Biological and cultural evolution – Future evolution of man.

STD: HIV, Gonorrhoea and Syphilis.

AIDS and Cancer awareness

### Text books:

- 1. Arumugam, N. (2008), Developmental Biology, Saras Publication, Nagercoil.
- 2. Gupta, P.K. (1999), Genetics, Rastogi Publications, Shivaji Road, Meerut U.P. India.
- 3. Dobzhansky, T., Ayala, F.J., Stebbins, G.L. and Valentine, J.W. (1971), Evolution, Surject Publication, New Delhi.

### **Reference books:**

- 1. Rastogi, V.B. (2006), Organic Evolution, 13th edition, Medtech, A division of Scientific International.
- 2. Ambika Shanmugam (2006), Fundamentals of Biochemistry for medical students, Books and Allied Publishers (P) Ltd, Chennai.
- 3. Hoar, S. William (2005), General and Comparative Physiology, Prentice Hall, India.
- 4. Verma, P.S& Agarwal, V.K. (2006), Chordata Embryology: developmental biology, S. Chand Publication, New Delhi.

\_\_\_\_\_