TRIPLE CONNECTED ETERNAL DOMINATION IN GRAPHS

G. MAHADEVAN¹, T. PONNUCHAMY², SELVAM AVADAYAPPAN³, §

ABSTRACT. The concept of Triple connected domination number was introduced by G. Mahadevan et. al., in [10]. The concept of eternal domination in graphs was introduced by W. Goddard., et. al., in [3]. The dominating set $S_0 \subseteq V(G)$) of the graph G is said to be an eternal dominating set, if for any sequence $v_1, v_2, v_3, \ldots v_k$ of vertices, there exists a sequence of vertices $u_1, u_2, u_3, \ldots u_k$ with $u_i \in S_{i-1}$ and u_i equal to or adjacent to v_i , such that each set $S_i = S_{i-1} - \{u_i\} \cup \{v_i\}$ is dominating set in G. The minimum cardinality taken over the eternal dominating sets in G is called the eternal domination number of G and it is denoted by $\gamma_{\infty}(G)$. In this paper we introduce another new concept Triple connected eternal domination in graph. The eternal dominating set $S_0 \subseteq V(G)$) of the graph G is said to be a triple connected eternal dominating set, if each dominating set S_i is triple connected. The minimum cardinality taken over the triple connected eternal dominating sets in G is called the triple connected eternal domination number of G and it is denoted by $\gamma_{tc,\infty}(G)$. We investigate this number for some standard graphs and obtain many results with other graph theoretical parameters.

Keywords: Triple connected domination number, Eternal domination in graphs, Triple connected eternal domination number of graphs.

AMS Subject Classification: 05C69

1. INTRODUCTION

By a graph we mean a finite, simple, connected and undirected graph G(V, E), where V denotes its vertex set and E its edge set. Unless otherwise stated, the graph G has p vertices and q edges. We denote a cycle on m vertices by C_m , a path on m vertices by P_m , a complete graph on m vertices by K_m and a complete bipartite graph on m, n vertices by $K_{m,n}$. We denote a prism graph on n vertices by Y_n , $n \ge 3$ is defined by Cartesian product of a cycle with a single edge. The ladder graph can be obtained as the Cartesian Product of two paths, one of which has only one edge, denoted by L_n , $n \ge 1$. In [9], J. Paulraj

¹ Department of Mathematics, Gandhigram Rural Institute Deemed to be University, Gandhigram, Dindigul.

e-mail: drgmaha2014@gmail.com; ORCID: https://orcid.org/0000-0003-2438-1576.

² Full Time Research Scholar, Department of Mathematics, Gandhigram Rural Institute Deemed to be University, Gandhigram, Dindigul.

e-mail: tponnuchamy@gmail.com; ORCID: https://orcid.org/0000-0002-2537-4733.

³ Department of Mathematics, VHNSN College, Virudhunagar.

e-mail: selvam_avadayappan@yahoo.co.in; ORCID: https://orcid.org/0000-0002-2498-6762. The research work was supported by DSA (Departmental special assistance) Gandhigram Rural Institute-Deemed to be university, Gandhigram under University Grants Commission- New Delhi. § Manuscript received: October 02, 2019; Accepted: May 3, 2020.

TWMS Journal of Applied and Engineering Mathematics V.11, Special Issue © Işık University, Department of Mathematics, 2021; all rights reserved.