

Document details - In Situ Synthesis, Characterization, and Catalytic Performance of Polypyrrole Polymer-Incorporated Ag₂MoO₄ Nanocomposite for Detection and Degradation of Environmental Pollutants and Pharmaceutical Drugs

1 of 1

→] Export 🛃 Download More... >

ACS Applied Materials and Interfaces

Volume 11, Issue 41, 16 October 2019, Pages 38321-38335

In Situ Synthesis, Characterization, and Catalytic Performance of Polypyrrole Polymer-Incorporated Ag₂MoO₄ Nanocomposite for Detection and Degradation of Environmental Pollutants and Pharmaceutical Drugs(Article)

Abinaya, M., Rajakumaran, R., Chen, S.-M., Karthik, R., Muthuraj, V. 🝳

^aDepartment of Chemistry, VHNSN College (Autonomous), Virudhunagar, Tamil Nadu, 626001, India ^bElectroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei, 106, Taiwan

Abstract

Material combinations of semiconductor with conducting polymer are gaining growing interest due to their enhanced activities in photocatalysis as well as electrochemical sensing. In this present work, we report a facile in situ synthesis of polypyrrole (PPy) polymer-incorporated silver molybdate (Ag2MoO4) nanocomposite that is utilized as a photocatalyst and electrocatalyst for the degradation of pollutant heavy metals, namely, methylene blue (MB) and heavy metal (Cr(VI)), and ciprofloxacin (CIP) and for detection of the drug, azomycin. The synthesized nanocomposite was characterized by various theoretical, spectral, and microscopic studies. Matching of the powder X-ray diffraction pattern with JCPDS no. 76-1747 confirmed the formation of α -Ag₂MoO₄/PPy. The surface topography and spherical morphology of the nanocomposite were studied using field emission-scanning electron microscopy and transmission electron microscopy. Fourier transform infrared spectral detail expounds the smooth incorporation of PPy to Ag₂MoO₄. The as-synthesized nanocomposite performs as an efficient photocatalyst in the degradation of MB (99.9%), Cr(VI) (99%), and CIP drug (99.8%) within 10 min. In addition to this, the Ag₂MoO₄/PPy-modified glassy carbon electrode (GCE) demonstrated excellent electrocatalytic activity in terms of a higher cathodic peak current and lower peak potential when compared with other modified and unmodified GCEs for the detection of azomycin. The Ag₂MoO₄/PPy/GCE displayed a broader linear response range and lower detection limit of 0.5-499 µM and 65 nM, respectively. Moreover, other potentially cointerfering compounds, such as a similar functional group-containing biological substances and inorganic species, have no interference effect toward azomycin sensing. Copyright © 2019 American Chemical Society.

Author keywords

$\label{eq:model} \fbox{Ag_2MoO_4/PPy} (azomycin) (CIP) (Cr(VI)) (electrochemical sensing) (in situ synthesis) (MB) (short-term degradation) (Short-t$			
Indexed keywords			
Engineering controlled terms:	Aromatic compounds) Conducting polymers) Electrocatalysts) Electrochemical sensors) Field emission microscopes) Glass membrane electrodes) Heavy metals) High resolution transmission electron microscopy) Nanocomposites) Pollution detection) Polypyrroles) Scanning electron microscopy) Silver compounds) Topography)		
Engineering uncontrolled terms	(Ag2MoO4/PPy) (azomycin) (Electrochemical sensing) (In-situ synthesis) (Short term)		

Cited by 76 documents

Sayed, M.M. , El-Hamid, I.S.A. , El-Bery, H.M.

Unveiling the potential of a functionalized pyrrole-based polymer for efficient cadmium ion removal from wastewater: synthesis, characterization, and performance evaluation

(2024) Environmental Sciences Europe

Singh, R.P. , Shiwankar, M.M. , Maurya, A.K.

Silver zirconate: A versatile visible light harvesting photocatalyst for oxygen evolution, PMS activation, and bactericidal activity

(2024) Journal of Photochemistry and Photobiology A: Chemistry

Nguyen, H.T. , Le, T.T.N. , Truong, M.T.

Au/Ag2MoO4 nanocomposite: A dual-function catalyst for dye degradation and colorimetric detection

(2024) Materials Today Communications

View details of all 76 citations

Inform me when this document is cited in Scopus:

Set citation	Set citation
alert >	feed >

Related documents

Find more related documents in Scopus based on:

Authors > Keywords >

Engineering main heading:	(Chromium compounds)	Topic:	
		Prominence percentile:	
EMTREE drug terms:	2 nitroimidazole) (ciprofloxacin) (methylene blue) (molybdenum) (molybdic acid) (nanocomposite) (nitroimidazole derivative) (polymer) (polypyrrole) (pyrrole derivative) (silver)		
EMTREE medical terms:	(catalysis) (chemistry) (pollutant)		
MeSH:	Catalysis Ciprofloxacin Environmental Pollutants Methylene Blue Molybdenum Nanocomposites Nitroimidazoles Polymers Pyrroles Silver		

Chemicals and CAS Registry Numbers:

2 nitroimidazole, 527-73-1; ciprofloxacin, 85721-33-1; methylene blue, 61-73-4; molybdenum, 7439-98-7; molybdic acid, 11116-47-5, 14259-85-9, 7782-91-4; polypyrrole, 30604-81-0; silver, 7440-22-4;

azomycin; Ciprofloxacin; Environmental Pollutants; Methylene Blue; molybdate; Molybdenum; Nitroimidazoles; Polymers; polypyrrole; Pyrroles; Silver

ISSN: 19448244	DOI: 10.1021/acsami.9b13682
Source Type: Journal	PubMed ID: 31549800
Original language: English	Document Type: Article
	Publisher: American Chemical Society

 Chen, S.-M.; Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei, Taiwan;
Copyright 2019 Elsevier B.V., All rights reserved.