

Document details - A novel n-CeO₂/n-CdO heterojunction nanocomposite for enhanced photodegradation of organic pollutants under visible light irradiation

l of l

J Export と Download More... >

Journal of Rare Earths

Volume 37, Issue 8, August 2019, Pages 853-860

A novel n-CeO₂/n-CdO heterojunction nanocomposite for enhanced photodegradation of organic pollutants under visible light irradiation(Article)

Saravanakumar, K., Muthupoongodi, S., Muthuraj, V. 은

^aDepartment of Chemistry, V.H.N.S.N College, Virudhunagar, Tamilnadu 626 001, India ^bDepartment of Chemistry, Sri Kaliswari College, Sivakasi, Tamilnadu 626 130, India ^cDepartment of Chemistry, Thiagarajar College, Madurai, Tamilnadu 625 009, India

Abstract

In this study, a series of novel visible light driven n-CeO₂/n-CdO heterojunction (CeO₂/CdO) nanocomposites were successfully fabricated by simple ultrasonication method. Several characterization tools including X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and UV-vis diffuse reflectance spectroscopy (UV-DRS), etc., were utilized to investigate the physicochemical properties of the catalyst and confirm the formation of heterojunction. Under visible light irradiations, the photocatalytic activities of the as-prepared CeO₂/CdO nanocomposites were evaluated by degrading of Congo red (CR) and Rhodamine B (RhB) solutions. As a result, the CeO₂/CdO (mass percentage ratio 1:3) nanocomposite displays remarkable performance for CR and RhB degradation. The enhancement in the photocatalytic performance of CeO2/CdO (1:3) nanocomposite can be attributed not only to the strong visible-light absorption region, separating the photogenerated electron-hole pairs but also to the formation of nn type heterojunction. The results also indicate that the CeO2/CdO (1:3) nanocomposite has good stabilization and high reusability. In addition, the mechanism is proposed for the coupled semiconductors and possible reasons for the enhancement of visible-light photocatalytic efficiency are also discussed. This work can provide a new gateway to fabricate visible photocatalysts and promising candidate catalysts for poisonous wastewater treatment in the near future. © 2019 Chinese Society of Rare Earths

Author keywords

(Heterojunction) (n-CeO₂/n-CdO) (Photocatalysis) (Photodegradation) (Rare earths) (Visible light) Indexed keywords

Engineering (Azo dyes) (Cerium oxide) (Dyes) (Heterojunctions) Find more related documents in controlled terms: $(\mathsf{High}\ \mathsf{resolution}\ \mathsf{transmission}\ \mathsf{e} \mathsf{lectron}\ \mathsf{microscopy})$ $(\mathsf{Irradiation})$ $(\mathsf{Light}\ \mathsf{absorption})$ Scopus based on: Nanocomposites) (Organic pollutants) (Photocatalysis) (Photocatalysts) (Photocatalytic activity) Authors > Keywords > (Photodegradation) (Physicochemical properties) (Rare earths) (Reusability) Rhodium compounds) (Scanning electron microscopy) (Wastewater treatment) Engineering (Characterization tools) (Photocatalytic efficiency) (Photocatalytic performance) SciVal Topic Prominence uncontrolled terms (UV-Vis diffuse reflectance spectroscopy) (Visible light) (Photogenerated electrons) Topic: (Visible-light irradiation) (Visible light absorption) Prominence percentile: Engineering main (Light) heading:

Cited by 23 documents

Chen, X., Wang, S., Jin, Y.

Construction of CeO2/PbFe12O19 Heterojunction Photocatalysts and their Preference for the Photodegradation of -C=O and -CONH2

(2023) ChemistrySelect

Jassim, S.A.-J., Nassar, E.M.A.

Synthesis, Structural and Optical Properties of CdO Nanocrystalline Prepared by Sol-Gel Method

(2022) AIP Conference Proceedings

Jassim, S.A.-J. , Nassar, E.M.A.

CdO Synthesis Techniques, Morphology and some of its Application, A Review

(2022) AIP Conference Proceedings

View details of all 23 citations

Inform me when this document is cited in Scopus:

Set citation	Set citation
alert >	feed >

Related documents

(j)

Funding details

Funding text

We gratefully acknowledge to the College Managing Board, The Principal and Head of the Department (Chemistry), VHNSN College for providing necessary research facilities.

ISSN: 10020721 CODEN: JREAE Source Type: Journal Original language: English DOI: 10.1016/j.jre.2018.12.009 Document Type: Article Publisher: Chinese Society of Rare Earths

Muthuraj, V.; Department of Chemistry, V.H.N.S.N College, Virudhunagar, Tamilnadu, India;
© Copyright 2019 Elsevier B.V., All rights reserved.