

Document details - Physical properties of rare earth metal (Gd³⁺) doped SnO₂ thin films prepared by simplified spray pyrolysis technique using nebulizer

l of l

J Export と Download More... >

Optik

Volume 194, October 2019, Article number 162887

Physical properties of rare earth metal (Gd³⁺) doped SnO₂ thin films prepared by simplified spray pyrolysis technique using nebulizer(Article)

S., P., J., R.M., K., D.A.K., P.S., S.K., S., P., L., A.

^aResearch Department of Physics, V.H.N.S.N. College, Virudhunagar, Tamilnadu 626001, India ^bResearch Department of Physics, H.H. The Rajah's College, Pudukkottai, Tamilnadu 622001, India ^cDepartment of Physics, Arul Anandar College, Karumathur, Tamilnadu 625514, India

Abstract

Pristine and rare earth (i.e) gadolinium doped SnO₂ thin films have been coated on micro-glass substrates with different Gd doping concentration at constant temperature 450 °C by simplified spray pyrolysis technique using nebulizer unit. The variation of doping concentration from 0 to 6 wt.% in the steps of 2 wt.%. Structural, optical, electrical, morphological and photoluminescence properties had been examined as a function of gadolinium doping level. The Xray diffraction study exposed that all the prepared pristine and Gd doped SnO₂ thin films are (110) preferred orientation with tetragonal crystal structure. The observed transmittance of Gd:SnO₂ thin film varies between 91-80% in the visible regions. The estimated optical band gap value was initially decreased from 3.79 to 3.74 eV and then it was slightly increased as 3.77 eV with respect to the increase of Gd doping concentrations. Homogeneous surface morphology with polyhedrons like grains without cracks for all the prepared samples was illustrated by SEM studies. EDS spectra confirms that the existence of Sn, O and Gd elements in the 4% Gd doped SnO₂ thin film surface. PL results indicates that three emission bands such as ultra violet, blue and green emission peaks at the wavelength of 360, 493 and 519 nm respectively, for all the prepared Gd:SnO₂ films. Minimum resistivity (ρ) 7.14 × 10⁻⁴ Ω -cm with activation energy (E_a) 0.05 eV, maximum carrier concentration (n) 2.36×10^{20} cm⁻³ and figure of merit (ϕ) 52.96×10^{-3} (Ω /sq)⁻¹ were obtained for 4% Gd doped SnO₂ thin film using Hall effect measurements. © 2019 Elsevier GmbH

Author keywords

Electrical properties (1)	Nebulized spray pyrolysis Optical Photoluminescence SnO2	
Engineering controlled terms:	Activation energy Carrier concentration Crystal orientation Electric properties Energy gap	Related documents
	(Film preparation) (Gadolinium) (Morphology) (Photoluminescence) (Rare earths) (Semiconductor doping) (Spray pyrolysis) (Substrates) (Surface morphology)	Find more related documents in Scopus based on:
Engineering uncontrolled terms	Activation energies (Ea) Nebulized spray pyrolysis Optical Photoluminescence properties SnO2 Spray-pyrolysis techniques Tetragonal crystal structure X-ray diffraction studies	Authors > Keywords >
Engineering main heading:	(Thin films)	SciVal Topic Prominence 🛈
-		Topic:

Cited by 25 documents

Althobaiti, M.G., Alosaimi, M.A. , Alharthi, S.S.

Q

Tailoring the optical performance of sprayed NiO nanostructured films through cobalt doping for optoelectronic device applications

(2024) Optical Materials

Pramitha, A., Sangamitha, V., Mishra, V.

Tailoring the optoelectronic properties of spray pyrolyzed SnO2 thin films through cerium doping

(2024) Optical Materials

Jaffri, S.B. , Ahmad, K.S. , Abrahams, I.

N-type semiconductor [Gd3+-Ho<... driven functionality enhancement in energy systems associated with photovoltaic and electrochemical contraptions

(2024) Materials Today Sustainability

View details of all 25 citations

Inform me when this document
is cited in Scopus:

Set citation	Set citation
alert >	feed >

Prominence percentile:

(j)

へ L., A.; Research Department of Physics, V.H.N.S.N. College, Virudhunagar, Tamilnadu, India;
⑥ Copyright 2019 Elsevier B.V., All rights reserved.