

Document details - Novel ginger-like morphology of barium molybdate: A promising electrocatalyst for the detection of neurotransmitter dopamine

l of l

J Export と Download More... >

International Journal of Electrochemical Science

Volume 13, Issue 11, 1 November 2018, Pages 10809-10820

Novel ginger-like morphology of barium molybdate: A promising electrocatalyst for the detection of neurotransmitter dopamine(Article)(Open Access)

Sundaresan, P., Chen, Y.C., Chen, S.-M., Chen, T.-W., Latha, P., Lou, B.-S.

^aElectroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No.1, Section 3, Chung-Hsiao East Road, Taipei, 106, Taiwan

^bResearch and Development Center for Smart Textile Technology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei, 106, Taiwan

^cDepartment of Chemistry, VHNSN College, Virudhunagar, Tamil Nadu, 626001, India

View additional affiliations \checkmark Abstract

In this work, we have report a novel electrochemical sensor for the selective detection of dopamine (DA) based on gingerlike morphology of barium molybdate (BaMoO4; BaM) modified screen printed carbon electrode (SPCE). The ginger-like BaM was prepared through a simple co-precipitation technique and its physiochemical properties were systematically investigated by various analytical and spectroscopic techniques such as X-ray diffraction (XRD), Raman, field emissionscanning electron microscopy (FE-SEM) and energy-dispersive X-ray spectroscopy (EDX). Furthermore, the as-prepared ginger-like BaM was effectively investigated for the sensitive and selective electrochemical determination of DA. The ginger-like BaM/SPCE shows a reversible electrochemical behavior with superior current response for DA detection. The BaM catalyst played a significant role to electrochemical detection of DA, as a results very low detection limit (0.021 µM), wide linear response range (0.1-266 μ M), well sensitivity (0.35 μ A μ M⁻¹cm⁻²) and good selectivity in the presence of common metal ions and biological compounds. This study provides a novel idea for the fabrication of binary metal oxides and their potential application in electrochemical sensor and biosensor. © 2018 The Authors.

Author keywords

Barium molybdate) Binary metal oxide) Dopamine) Electrochemical sensor) Ginger-like) Neurotransmitter) Funding details				
Funding sponsor	Funding number	Acronym	Related docun	
Ministry of Science and Technology	106-2221-E-182-021	MOST	Find more related Scopus based on:	

Funding text

We would also like to acknowledge The Ministry of Science and Technology, Taiwan (MOST 106-2221-E-182-021

ISSN: 14523981 Source Type: Journal Original language: English

DOI: 10.20964/2018.11.59 Document Type: Article Publisher: Electrochemical Science Group

Cited by 4 documents

Burns, G., Ali, M.Y., Howlader, M.M.R.

Advanced functional materials for electrochemical dopamine sensors

(2023) TrAC - Trends in Analytical Chemistry

Kokulnathan, T., Wang, T.-J., Kumar, E.A.

An electrochemical platform based on yttrium oxide/boron nitride nanocomposite for the detection of dopamine

(2021) Sensors and Actuators B: Chemical

Kumar, E.A., Chen, T.-W., Chen, S.-M.

A disposable electrochemical sensor based on iron molybdate for the analysis of dopamine in biological samples

(2021) New Journal of Chemistry

View details of all 4 citations

Inform me when	this document
is cited in Scopus	:
Sot citation	Sot citation

Set citation	Set citation
alert >	feed >

ments

ed documents in

Authors > Keywords >

SciVal Topic Prominence ①

(j)

Topic:

Prominence percentile:

Q