

Document details - Photocatalytic degradation of organic contaminants by g-C₃N₄/EPDM nanocomposite film: Viable, efficient and facile recoverable

1 of 1

→ Export 🕑 Download More... >

Materials Science and Engineering C

Volume 84, 1 March 2018, Pages 188-194

Photocatalytic degradation of organic contaminants by g-C₃N₄/EPDM nanocomposite film: Viable, efficient and facile recoverable(Article)

Selvam, V., Senthil Kumar, P., Navaneetha Krishnan, G., Senthil Andavan, G.T. 2

^aDepartment of Chemistry, VHNSN College, Virudhunagar, Tamil Nadu 626001, India ^bDepartment of Mechanical Engineering, K. Ramakrishnan College of Technology, Trichy, India ^cSRM Research Institute, Department of Chemistry, SRM University, Kattankulathur, Tamil Nadu 603203, India

View additional affiliations \checkmark Abstract

The original metal free graphitic carbon nitride/ethylene propylene diene monomer nanocomposite film (g-C₃N₄/EPDM NCF) was fabricated by facile solution cast method. g-C₃N₄/EPDM NCF with diameter (50 mm) and thickness (4 mm) was investigated towards the photocatalytic degradation of methylene blue (MB) and methyl orange (MO) dye solution under visible light irradiation. The as synthesized g-C₃N₄/EPDM NCF was exhibited high crystalline nature with the crystalline size of 21.53 nm, the smooth surface nature and the particle size was observed from the TEM analysis is 20 nm. Furthermore, the influence of operational parameters was carried out which demonstrated that 100 mg photocatalyst and 25 μ M of dye concentration were obtained as an optimized condition for the best photocatalytic degradation results. As a result of scavenger experiment, it was concluded that the hydroxyl radical ([rad]OH) was actively involved in the photocatalytic degradation. The g-C₃N₄/EPDM NCF were recoverable from the photocatalytic reaction system and the present find findings may open up a new platform for the simple handpicked photocatalyst. © 2017 Elsevier B.V.

Author keywords

(100% recoverability) (D Indexed keywords	ye contaminant) (g-C ₃ N ₄ /EPDM) (Handpicking method) (Photocatalytic degradation) (Polymer)
Engineering controlled terms:	Aromatic compounds Azo dyes Carbon Crystalline materials Dyes Impurities Nanocomposites Particle size Particle size analysis Photodegradation Polymers
Engineering uncontrolled terms	(g-C3N4/EPDM) Graphitic carbon nitrides) Handpicking method) Operational parameters) (Photo catalytic degradation) (Photocatalytic reactions) (Recoverability) (Visible-light irradiation)
Engineering main heading:	(Nanocomposite films)
EMTREE drug terms:	(azo compound) (cyanogen) (elastomer) (ethylene derivative) (ethylene-propylene-diene-monomer) (graphite) (hydroxyl radical) (methyl orange) (methylene blue) (nanocomposite) (nitrile) (methylene blue) (nanocomposite)
EMTREE medical terms:	(catalysis) (chemistry) (infrared spectroscopy) (light) (particle size) (photolysis) (radiation response) (transmission electron microscopy) (water pollutant) (X ray diffraction)

Cited by 10 documents

Li, D. , Li, H. , Long, M.

Synergetic effect of photocatalysis and peroxymonosulfate activation by MIL-53Fe@TiO2 on efficient degradation of tetracycline hydrochloride under visible light irradiation

(2022) CrystEngComm

Leeladevi, K. , Arunpandian, M. , Vinoth Kumar, J.

CoWO4 decorated ZnO nanocomposite: Efficient visiblelight-activated photocatalyst for mitigation of noxious pollutants

(2022) Physica B: Condensed Matter

Sakthi, S. , Hariharan, S.R. , Mahendran, S.

Effect of nano additives on magnesium alloy during turning operation with minimum quantity lubrication

(2021) Materials Today: Proceedings

View details of all **10** citations

Inform me when this document is cited in Scopus:

Set citation	Set citation
alert >	feed >

Related documents

Find more related documents in Scopus based on:

Authors > Keywords >

SciVal Topic Prominence ①

Topic:

Prominence percentile:

()

MeSH:

Azo Compounds Catalysis Elastomers Ethylenes Graphite Hydroxyl Radical Light
(Methylene Blue) (Microscopy, Electron, Transmission) (Nanocomposites) (Nitriles) (Particle Size)
(Photolysis) (Spectroscopy, Fourier Transform Infrared) (Water Pollutants, Chemical)
(X-Ray Diffraction)

Chemicals and CAS Registry Numbers:

graphite, 7782-42-5; hydroxyl radical, 3352-57-6; methyl orange, 547-58-0; methylene blue, 61-73-4;

Azo Compounds; cyanogen; Elastomers; ethylene-propylene-diene-monomer; Ethylenes; Graphite; Hydroxyl Radical; methyl orange; Methylene Blue; Nitriles; Water Pollutants, Chemical

ISSN: 09284931 Source Type: Journal Original language: English DOI: 10.1016/j.msec.2017.11.039 PubMed ID: 29519428 Document Type: Article Publisher: Elsevier Ltd

Selvam, V.; Department of Chemistry, VHNSN College, Virudhunagar, Tamil Nadu, India;
© Copyright 2017 Elsevier B.V., All rights reserved.