

Document details - Physical properties of nebulized spray pyrolysised SnO₂ thin films at different substrate temperature

1 of 1

→ Export 🛃 Download More... >

Applied Physics A: Materials Science and Processing

Volume 124, Issue 9, 1 September 2018, Article number 643

Physical properties of nebulized spray pyrolysised SnO_2 thin films at different substrate temperature(Article)

Palanichamy, S., Mohamed, J.R., Kumar, P.S.S., Pandiarajan, S., Amalraj, L. 으

^aResearch Department of Physics, V.H.N.S.N. College, Virudhunagar, Tamilnadu 626001, India ^bP.G. and Research Department of Physics, H.H. The Rajah's College, Pudukkottai, Tamilnadu 622001, India ^cDepartment of Physics, Devanga Arts College, Aruppukottai, Tamilnadu 626101, India

Abstract

Using nebulized spray pyrolysis technique, we investigate tin oxide (SnO₂) thin films had been coated with different substrate temperature (300–500 °C) onto microscopic glass substrate. All the prepared films have tetragonal crystalline structure with preferential orientation (110) observed by X-ray diffraction analysis. The reduced strain due to the increase of substrate temperature from 300 to 450 °C increased the average crystalline size from 27.40 to 42.99 nm and then decreased further. All the films display high transmittance in the visible and also in IR region. As the substrate temperature had increased from 300 to 500 °C, the average transmittance of SnO₂ thin films varied between 79 and 90%. The energy band gap values had diminished from 3.91 to 3.75 eV by increasing the substrate temperature. The refractive index (n) of these films had increased from 2.11 to 2.32 with increase in substrate temperature from 300 to 450 °C and then decreased further. The optical static and high frequency dielectric constants (ε_0 and ε_{∞}) have been determined as a role of substrate temperature. The surface morphology of these thin films exhibited polyhedron-shaped grains obtained by scanning electron microscope. Energy dispersive X-ray analysis proved the presence of Sn and O elements in the as-prepared SnO₂ films. Hall effect measurements shows that the film had deposited at 450 °C exhibited lowest resistivity $6.53 \times 10^{-3} \Omega$ cm and highest figure of merit $9.14 \times 10^{-3} (\Omega/sq)^{-1}$ among all the samples. Activation energy varied between 0.14 and 0.20 eV with the increase of substrate temperature from 300 to 500 °C. © 2018, Springer-Verlag GmbH Germany, part of Springer Nature.

Indexed keywords

Engineering controlled terms:	Activation energy Crystalline materials Energy dispersive X ray analysis Energy gap (Film preparation) Oxide films Refractive index Scanning electron microscopy	Related documents
Engineering uncontrolled terms	Spray pyrolysis Substrates (In oxides) (X ray powder diffraction) Average crystalline size Crystalline structure (Different substrates) (Hall effect measurement) (High-frequency dielectrics) (Nebulized spray pyrolysis) (Preferential orientation) Substrate temperature (Substrate temperature)	Find more related documents in Scopus based on: Authors > Keywords >
Engineering main heading:	Thin films	SciVal Topic Prominence ① Topic: Prominence percentile:
ISSN: 09478396 CODEN: APAMF Source Type: Journal Original language: Eng	DOI: 10.1007/s00339-018-2065-8 Document Type: Article Publisher: Springer Verlag lish	

Cited by 8 documents

Sneha, C. , Baiju, V.K. , Varghese, S.

Q

Antimony doped tin oxide MOS sensors for hydrogen detection at low concentrations

(2023) Sensors and Actuators A: Physical

Nwanna, E.C. , Imoisili, P.E. , Jen, T.-C.

Synthesis and characterization of SnO2 thin films using metalorganic precursors

(2022) Journal of King Saud University - Science

Solís, D. , Peinado, J.J. , Ramos-Barrado, J.R.

Tin dioxide transparent films sprayed from different precursors for supercapacitor current collectors

(2022) Applied Physics A: Materials Science and Processing

View details of all 8 citations

Inform me when this document is cited in Scopus:

Set citationSet citationalert >feed >

- © Copyright 2018 Elsevier B.V., All rights reserved.